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ABSTRACT: A 2-D depth-average computational model based on the shallow water theory including as-
pects of non-uniform bottom relief has been developed. An explicit differential scheme formulated on the 
“one-sign” transport matrixes has been used for solving the boundary problem of non-conservative from. 
Corrections to the differential scheme are proposed to provide good agreement with available basic solutions 
of the equations system. In couple with the flow module, the diffusive-transport equation has also been 
solved respectively at each time step to predict the depth-average concentration or surface concentration of 
pollution spreading in a channel that contained islets. 

1 INTRODUCTION 

Predicting of water flow regime in an open channel such as river branch and estuary is necessary not only for 
civil engineering projects where many man-made constructions to be introduced but also be importance for 
controlling water environment as many pollution sources may discharge out form industries or catastrophes. 
Recently many 2-D mathematical models have been proposed basing on the shallow water theory instead of 
an expensive full 3-D model. Among those models, some are taken in to account various phenomenon that 
could influence on the flow characteristics such as bottom friction, bed evaluation due to sediment transport, 
as well as secondary flow in curved channels, see Minh Duc (1996). In this paper a simple approach for solv-
ing numerically the depth-average shallow water equations are introduced taking into account the sense of 
disturbance transportation during integrating the governing equations. This technique is especially advanced 
when the flow is rapid or the flow direction may change with time, for example in an estuary where the flow 
direction usually changes periodically due to tidal influence. By coupling the above-mentioned hydrody-
namic module with solving the diffusion equation time-to-time, a transport-diffusion model is constructed 
which provides a useful instrument to predict the depth-average concentration of pollution along the channel 
once there are polluted sources spread out. Computational experiments have been carried out for a river 
branches in Mekong delta of Vietnam with real shape and bottom topography. 

2 CALCULATION METHOD 

2.1 Governing equations 
Considering that the fluid is incompressible, homogeneous and viscous, the pressure distribution is quasi-
hydrostatic, in a Cartesian coordinate system zyx ,,  the three-dimensional  problem described by the Rey-
nolds’ equations is reduced by depth-averaging to a two-dimensional problem  knew as “shallow water the-
ory”. The equation is expressed in mean values of the velocity components u  and v  and the water depth h  
and applicable for a shallow domain in which the vertical characterized dimension is rather small in com-
parisons with horizontal one. For an open channel, the Coriolis force that is due to the earth’s rotation around 
its axis is negligible therefore the equation system is as follows, see Abbot (1983): 

 



SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY 
Series - Computer Science Boundary Field Problems and Computer Simulation  - 43rd thematic issue 
________________________________________________________________________________________________________2001 

 

20 

0
y

vh
x

uh
t
h

=
∂

∂
+

∂

∂
+

∂

∂
 (1) 

xh
x
Hgh

x
hgh

y
uvh

x
uuh

t
uh

τ+
∂

∂
=

∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
 (2) 

yh
y
Hgh

y
hgh

y
vvh

x
uvh

t
vh

τ+
∂

∂
=

∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
 (3)    

where H =water depth at still state; g =gravitation acceleration;  yx ττ , = shear stress caused by bottom 
friction and viscous between the fluid layers: 
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where fc = bottom friction coefficient which is proposed by various experts in term of empirical formulas; 
ν = dynamical viscosity. One of such well know empirical formulas for bottom friction coefficient that has 
been used in this programming is the Chezy formula, see Minh Duc (1996): 
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where sk = hydraulic radius of the channel is a further empirical parameter 
When in flow appears pollution substance, it spreads along the channel by mainly two processes: diffu-

sion and transportation. A part of substance may be neutralized by some reasons. Mathematically, these pro-
cesses can be described by the following equation, see Zgurovsky et al. (1997): 
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where ϕ = depth-average concentration of pollution, σ = coefficient characterized neutralization rate of 
pollution,µ =diffusive coefficient and iq =discharge rate of pollution at point ),( ii yx . Function δ is 
taken unit value at point ),( ii yx but turns to zero at others else. 
 
2.2 Boundary conditions 
In order to solve the differential equations (1)-(3), boundary conditions must be specified for all independent 
variables. At the upstream boundary, the distribution of velocity is set proportional to the flow depth as in 
flow condition. At the outlet boundary, the flow depth is prescribed and the stream-wise gradient of other 
variables are set to zero, implying fully developed flow. In addition the velocity is corrected by considering 
that the total inflow to the computational do main must equal the outflow from the domain since the channel 
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bottom as well as solid wall restrained flow within the channel are assumed impermeable. At the solid 
boundary, for the viscous fluid the sleeping condition was used i.e. both flow components were set to zero 

0,0 == vu  while the gradient of water elevation Hh −=ς is also set to zero. For diffusive-transport 
equation, the gradient of concentration n∂∂ϕ  is set to zero at the solid wall as well as at outlet bounda-
ries. Discharge of pollution q is given at several points in the flow domain at prescribed periods of time. 
 
2.3 Numerical method 
The explicit finite differential method, so called the “against flow” scheme is used to solve the above men-
tioned boundary problem, see Samarsky (1983), Beliaev. & Khrutch (1984). For this, equations (1)-(3) to be 
written in non-conservative vector form as follows: 
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where U = column vector of vuh ,, ; F = column vector of  the right parts of equations (1)-(3); BA, = 
transformation matrixes: 
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In order to apply the “against flow” method, the matrixes BA, are then broken up as sum of sign-
unchanged matrixes: 

−+

+= AAA ; −+

+= BBB  (12) 

so that, the determinants of the matrixes with plus-sign are not negative while the determinants of the minus -
sign ones are not positive. 

Equation (10) after integrating by using explicit finite differential operators is now taken following form: 
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The condition for stability of the scheme is knew as Courant-Levis condition: 
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where gha =  is also called  “long wave transportation speed”. 
Obviously, it is required that the numerical solutions of equation (10) should provide fully agreement 

with its basic analytical solutions. In this case, we note that with any bottom profile ),( yxHH = , col-
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umn vector )0,0),,(( yxHU = yet to be a basic solution of (10). There for a correction should be applied 
to the discrete integration to provide this agreement.  

For solving diffusive-transport equation (9), assuming that the flow field is predetermined and the follow-
ing differential scheme has been used: 
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Thus instead of solving equation system (1)-(3) and (9) simultaneously, at every time step, firstly the ve-
locity components are calculated via (10) then these flow parameters are used for calculating pollution con-
centration by solving equation (9) using differential scheme (17) in which, the space differential terms are 
taken forward or backward depends on the flow component in that direction is positive or negative respec-
tively. 

3 COMPUTATIONAL RESULTS 

As a computational experiment, the model is applied for a river branch in Mekong delta in Vietnam. The 
shape of the river branch is formed with and an islet as showed in figure 1. The length of the computational 
domain is about 2180m, while the wide of river branch is changing from upstream to its outlet boundary with 
the minimum and maximum wide are of about 300m and 1200m respectively. The river branch contains an 
islet at the middle that divides the flow domain into two parts. Computational domain forms a regular or-
thogonal mesh of 82x110 grid points, where space step is of 20m. Maximum water depth is somewhat of 
12m while the shallowest point is of 2m water depths along solid boundaries. 
 
3.1 Steady case 
At upstream boundary the water discharge is given at rate Q=1000m3/s. Taking initial condition as water in 
the domain remains still at moment t=0, the flow in generally will reach fully steady state after 5000s. The 
maximum time step is recommended 0.75s while the model is unstable thus after hundreds seconds with the 
time step 1s. The distribution of velocity magnitude at full steady state is shown in figure 2. From the figure 
may see that the velocity magnitude at straight channel is much higher than those in curved one. In figure 3 
illustrated the development of pollution concentration along the river when a pollution source of q=100kg/s 
is discharged out at point B coordinate (x=600m,y=1860m). The pollution is spreading along the riverbank. 
The highest concentration at down stream is about 0.5 kg/m3 while the value near discharging point is a bout 
1.5kg/m3. The contour lines are curved along the riverbank. In figure 4 shown concentration contours after 
30000s of discharging of pollution at point A at upstream (x=220m, y=2180m). The existence of the islet is 
also obviously seen on the contours picture as the contour lines are fitted with the shape of the flow domain. 

 
3.2 Unsteady case 
To carry out an experiment for unsteady case, the water level at down stream is proposed to be fluctuated pe-
riodically by time )/2sin( Ttd πς = , where d=1m and T=3600s. Pollution concentration in this case is 
considered as the salinity at sea. Flow discharge at upstream is given constantly Q=700cm3/s.    

The concentration of salt is given constantly at outlet boundary ϕ0=1kg/m3. Figures 5-6 show the salinity 
contours lines at different time in a period. The salinity in the straight channel is much higher in the curved 
one. Figure 7 illustrates water level as a function of time at point C (x=1580m, y=1180m). The water level 
also so fluctuates with the same rule as given at the outlet boundary. Slight difference in phase and amplitude 
between the outlet boundary and inside the flow domain may be explained as the influence of topography as 
well as bottom friction. Relative salinity c=ϕ/ϕ0 at point C is varied periodically by time after 20 hours, 
when the flow is fully developed and is shown in figure 8. Figure 9 shows also relative salinity displacement 
but for point D (x=640m, y=1460m) near the islet. The difference of the curved shape of salinity variation 
between the two points proves that the existence of an islet within the flow domain leads to a more compli-
cated picture of salinity distribution. 
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Figure 1. Water depth profile and topography 
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Figure 2. Velocity magnitude distribution, steady case, 
Q=1000 
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Figure 3. Concentration contours in steady flow after 
30000s of discharging at point A 

0 0.18 0.36 0.54 0.72 0.9 1.08 1.26 1.44 1.62
0

0.22

0.44

0.65

0.87

1.09

1.31

1.53

1.74

1.96

2.18

0.07

0.058

0.058

0.058

0.058

0.047

0.047

0.047

0.047

0.047

0.035

0.035

0.035

0.035

0.035

0.035
0.035

0.035

0.035

0.0230.023

0.023

0.023

0.023

0.023
0.023

0.023

0.023

0.012

0.012

0.012

0.012

0.012

0.012

0.012

0.012

0.012

0.012

 
Figure 4. Concentration contours in steady flow after 
30000s of discharging at point B 
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Figure 5. Salinity concentration after 27000s, T=3600s, 
Q=700, a=1m 
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Figure 6. Velocity magnitude distribution 28000s, 
T=3600s, Q=700, a=1m 
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Figure 7. Water level variation at point C 
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Figure 8. Salinity variation at point C 
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Figure 9. Salinity variation at point D 

4 CONCLUSION 

The proposal model provides a simple instrument for calculating hydrodynamic regime as well as pollution 
transportation in an open channel. The computational results are reasonable in term of quantity. To verify the 
model qualitatively requires more field-measuring data. The model is applicable for a channel with compli-
cated topography by using markers to identify the dry points and wet points in the computational domain. 
From environment point of view, the model is applicable to define authorized limited discharge rate of a pol-
luted substance up stream that should not be harmful to down stream environment. 
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Duongs N.H., Kručs V.K. Plūsmas un piesārņojuma transporta skaitliskā modelēšana atklātā kanālā ar sarežģī-
tu ģeometriju un apakšas virsmu. Divdimensionāls skaitliskais modelis, kurš izmanto seklā ūdens teoriju, ievērojot 
neplakanas kanālā dibena virmas ietekmi. Tiešā diferenciāla shēma ir formulēta, izmantojot transporta matricu. Shēma 
izmantota robežproblēmas risināšanai nekonservatīvā formā. Tiek piedāvāti tādi diferenciālas shēmas uzlabojumi, kuri 
nodrošina labu attīstību vienādojumu sistēmas fundamentālajiem risinājumiem. Izmantojot plūsmas modeli, katram lai-
ka solim atrisināts difūzīvā transporta vienādojums. Risinājums dod vidējo piesārņojuma koncentrāciju dziļumam un 
arī virsmas koncentrācijas kanālā, kurā ir salas. 

 
Дуонг Н.Х., Круч В.К. Численное моделирование потока и траспорта загрязнения в открытых каналах, 
имеющих сложную геометрию и поверхность дна. Двухмерная численная модель основана на теории 
неглубокой воды с учетом неплоского дна. Явная дифференциальная схема, сформированная на базе матриц 
транспорта, была использована для решения краевой задачи в неконсервативной форме. Предложены 
коррекции этой схемы, которые обеспечивают хорошее соответствие с фундаментальными решениями для 
системы уравнений. В сочетании с модулем потока, уравнение диффузного траспорта было решено для 
каждого временного шага. Полученное решение дает среднюю концентрацию загрязнения по глубине, а также 
поверхностную концентрацию, которая распространяется в канале содержащем острова. 
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