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ABSTRACT: A 2-D depth-average computational model based on the shallow water theory including as-
pects of non-uniform bottom relief has been developed. An explicit differential scheme formulated on the
“one-sign” transport matrixes has been used for solving the boundary problem of non-conservative from.
Corrections to the differential scheme are proposed to provide good agreement with available basic solutions
of the equations system. In couple with the flow module, the diffusive-transport equation has also been
solved respectively at each time step to predict the depth-average concentration or surface concentration of
pollution spreading in a channel that contained islets.

1 INTRODUCTION

Predicting of water flow regime in an open channel such as river branch and estuary is necessary not only for
civil engineering projects where many man-made constructions to be introduced but also be importance for
controlling water environment as many pollution sources may discharge out form industries or catastrophes.
Recently many 2-D mathematical models have been proposed basing on the shallow water theory instead of
an expensive full 3-D model. Among those models, some are taken in to account various phenomenon that
could influence on the flow characteristics such as bottom friction, bed evaluation due to sediment transport,
as well as secondary flow in curved channels, see Minh Duc (1996). In this paper a simple approach for solv-
ing numerically the depth-average shallow water equations are introduced taking into account the sense of
disturbance transportation during integrating the governing equations. This technique is especially advanced
when the flow is rapid or the flow direction may change with time, for example in an estuary where the flow
direction usually changes periodically due to tidal influence. By coupling the above-mentioned hydrody-
namic module with solving the diffusion equation time-to-time, a transport-diffusion model is constructed
which provides a useful instrument to predict the depth-average concentration of pollution along the channel
once there are polluted sources spread out. Computational experiments have been carried out for a river
branches in Mekong delta of Vietnam with real shape and bottom topography.

2 CALCULATION METHOD

2.1 Governing equations

Considering that the fluid is incompressible, homogeneous and viscous, the pressure distribution is quasi-
hydrostatic, in a Cartesian coordinate system X, ), Z the three-dimensional problem described by the Rey-
nolds’ equations is reduced by depth-averaging to a two-dimensional problem knew as “shallow water the-
ory”. The equation is expressed in mean values of the velocity components # and V and the water depth /1
and applicable for a shallow domain in which the vertical characterized dimension is rather small in com-
parisons with horizontal one. For an open channel, the Coriolis force that is due to the earth’s rotation around
its axis is negligible therefore the equation system is as follows, see Abbot (1983):

19



SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY

Series - Computer Science Boundary Field Problems and Computer Simulation - 43" thematic issue
2001
ch 8uh 8Vh
=0 0]
8t ox 8y
Guh 8uuh ouvh Oh OH
+gh—=gh—+hrt, (2)

a o oy a

ovh ouvh Ovvh oh oH
+ + +gh—=gh—+ht, 3)
ot ox Oy oy oy

where H =water depth at still state; @ =gravitation acceleration; 7 s T
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where C = bottom friction coefficient which is proposed by various experts in term of empirical formulas;
V = dynamical viscosity. One of such well know empirical formulas for bottom friction coefficient that has
been used in this programming is the Chezy formula, see Minh Duc (1996):
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where k ¢ = hydraulic radius of the channel is a further empirical parameter

When in flow appears pollution substance, it spreads along the channel by mainly two processes: diffu-
sion and transportation. A part of substance may be neutralized by some reasons. Mathematically, these pro-
cesses can be described by the following equation, see Zgurovsky et al. (1997):

—4+u—+v—+ — |+—¢q;0(x;,y;
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where @ = depth-average concentration of pollution, O = coefficient characterized neutralization rate of
pollution, £ =diffusive coefficient and @;=discharge rate of pollution at point (x;, yl) Function O is
taken unit value at point (X;, )’; ) but turns to zero at others else.
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2.2 Boundary conditions

In order to solve the differential equations (1)-(3), boundary conditions must be specified for all independent
variables. At the upstream boundary, the distribution of velocity is set proportional to the flow depth as in
flow condition. At the outlet boundary, the flow depth is prescribed and the stream-wise gradient of other
variables are set to zero, implying fully developed flow. In addition the velocity is corrected by considering
that the total inflow to the computational do main must equal the outflow from the domain since the channel
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bottom as well as solid wall restrained flow within the channel are assumed impermeable. At the solid
boundary, for the viscous fluid the sleeping condition was used i.e. both flow components were set to zero
u =0,v =0 while the gradient of water elevation ¢ = /& — H is also set to zero. For diffusive-transport
equation, the gradient of concentration O Q / On is set to zero at the solid wall as well as at outlet bounda-
ries. Discharge of pollution ¢ is given at several points in the flow domain at prescribed periods of time.

2.3 Numerical method

The explicit finite differential method, so called the “against flow” scheme is used to solve the above men-
tioned boundary problem, see Samarsky (1983), Beliaev. & Khrutch (1984). For this, equations (1)-(3) to be
written in non-conservative vector form as follows:

aU+AaU+BaU:F (10)
ot oy

where U = column vector of /,u,Vv; F = column vector of the right parts of equations (1)-(3); A, B =
transformation matrixes:

u h 0 v 0 h
A=|g u O0|;B=|g v 0 (11)
0 0 u 0 0 v

In order to apply the “against flow” method, the matrixes A, B are then broken up as sum of sign-
unchanged matrixes:

A=A"+A4 ;B=B" +B" (12)

so that, the determinants of the matrixes with plus-sign are not negative while the determinants of the minus -
sign ones are not positive.

Equation (10) after integrating by using explicit finite differential operators is now taken following form:
U™ =U" ~ MU KU + 4 AU + B RU" + B AU +F") 1)

+ o4t . .
where A; R A} = discrete differential operators:
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The condition for stability of the scheme is knew as Courant-Levis condition:
minmAx, A
At < n{ 4 y} (16)
maxju,|v|,a

where d = 4/ gh is also called “long wave transportation speed”.
Obviously, it is required that the numerical solutions of equation (10) should provide fully agreement
with its basic analytical solutions. In this case, we note that with any bottom profile H = H (x, y) , col-
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umn vector U = (H(x, ),0,0)yet to be a basic solution of (10). There for a correction should be applied
to the discrete integration to provide this agreement.
For solving diffusive-transport equation (9), assuming that the flow field is predetermined and the follow-
ing differential scheme has been used:
a u-+u —lul 0 V+v v
ol b o v v
Yoo 2 2 o 2 2

Thus instead of solving equation system (1)-(3) and (9) simultaneously, at every time step, firstly the ve-
locity components are calculated via (10) then these flow parameters are used for calculating pollution con-
centration by solving equation (9) using differential scheme (17) in which, the space differential terms are
taken forward or backward depends on the flow component in that direction is positive or negative respec-
tively.

Ay an

3 COMPUTATIONAL RESULTS

As a computational experiment, the model is applied for a river branch in Mekong delta in Vietnam. The
shape of the river branch is formed with and an islet as showed in figure 1. The length of the computational
domain is about 2180m, while the wide of river branch is changing from upstream to its outlet boundary with
the minimum and maximum wide are of about 300m and 1200m respectively. The river branch contains an
islet at the middle that divides the flow domain into two parts. Computational domain forms a regular or-
thogonal mesh of 82x110 grid points, where space step is of 20m. Maximum water depth is somewhat of
12m while the shallowest point is of 2m water depths along solid boundaries.

3.1 Steady case

At upstream boundary the water discharge is given at rate Q=1000m’/s. Taking initial condition as water in
the domain remains still at moment t=0, the flow in generally will reach fully steady state after 5000s. The
maximum time step is recommended 0.75s while the model is unstable thus after hundreds seconds with the
time step 1s. The distribution of velocity magnitude at full steady state is shown in figure 2. From the figure
may see that the velocity magnitude at straight channel is much higher than those in curved one. In figure 3
illustrated the development of pollution concentration along the river when a pollution source of g=100kg/s
is discharged out at point B coordinate (X—600rn,y 1860m) The pollution is spreading along the riverbank.

The hlghest concentration at down stream is about 0.5 kg/m’ while the value near discharging point is a bout
1.5kg/m’. The contour lines are curved along the riverbank. In figure 4 shown concentration contours after
30000s of discharging of pollution at point A at upstream (x=220m, y=2180m). The existence of the islet is
also obviously seen on the contours picture as the contour lines are fitted with the shape of the flow domain.

3.2 Unsteady case

To carry out an experiment for unsteady case, the water level at down stream is proposed to be fluctuated pe-
riodically by time ¢ = d sin(27¢/T'), where d=1m and T=3600s. Pollution concentratlon in this case is
considered as the salinity at sea. Flow discharge at upstream is given constantly Q=700cm’/s.

The concentration of salt is glven constantly at outlet boundary ¢,=1kg/m’. Flgures 5-6 show the salinity
contours lines at different time in a period. The salinity in the straight channel is much higher in the curved
one. Figure 7 illustrates water level as a function of time at point C (x=1580m, y=1180m). The water level
also so fluctuates with the same rule as given at the outlet boundary. Slight difference in phase and amplitude
between the outlet boundary and inside the flow domain may be explained as the influence of topography as
well as bottom friction. Relative salinity c=¢/p0 at point C is varied periodically by time after 20 hours,
when the flow is fully developed and is shown in figure 8. Figure 9 shows also relative salinity displacement
but for point D (x=640m, y=1460m) near the islet. The difference of the curved shape of salinity variation
between the two points proves that the existence of an islet within the flow domain leads to a more compli-
cated picture of salinity distribution.
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Figure 3. Concentration contours in

30000s of discharging at point A

steady flow after
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Figure 4. Concentration contours in steady flow after

30000s of discharging at point B
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Figure 5. Salinity concentration after 27000s, T=3600s,
Q=700, a=1m

Figure 6. Velocity magnitude distribution 28000s,
T=3600s, Q=700, a=1m
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Figure 8. Salinity variation at point C
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Figure 9. Salinity variation at point D
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4 CONCLUSION

The proposal model provides a simple instrument for calculating hydrodynamic regime as well as pollution
transportation in an open channel. The computational results are reasonable in term of quantity. To verify the
model qualitatively requires more field-measuring data. The model is applicable for a channel with compli-
cated topography by using markers to identify the dry points and wet points in the computational domain.
From environment point of view, the model is applicable to define authorized limited discharge rate of a pol-
luted substance up stream that should not be harmful to down stream environment.
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Duongs N.H., Krué¢s V.K. Pliismas un piesarpojuma transporta skaitliska modeléSana atklata kanala ar sareZgi-
tu geometriju un apaksas virsmu. Divdimensionals skaitliskais modelis, kurs izmanto sekla iidens teoriju, ieverojot
neplakanas kanala dibena virmas ietekmi. Tiesa diferenciala shema ir formuléta, izmantojot transporta matricu. Shéma
izmantota robezproblémas risinasanai nekonservativa forma. Tiek piedavati tadi diferencialas shémas uzlabojumi, kuri
nodrosina labu attistibu vienadojumu sistemas fundamentalajiem risin@jumiem. Izmantojot pliismas modeli, katram lai-
ka solim atrisinats difuziva transporta vienadojums. Risinajums dod videjo piesarnojuma koncentraciju dzilumam un
art virsmas koncentrdcijas kanala, kura ir salas.

Hdyonr H.X., Kpyu B.K. UnciienHoe Moge1HpOBaHMe MOTOKA U TPACHOPTA 3arpA3HEHHs] B OTKPBITHIX KaHAJIAX,
UMEIINX CJI0KHYI) TeOMETPHI0 M NOBEPXHOCTb [IHA. [[GYXMepHAas YUCIEHHAs: MOOelb OCHOBAHA HA Meopuu
He2yOOoKOoU 600bl C YUemoM Henjiocko2o OHa. Aenas oudgepenyuanrvras cxema, chopmuposannas Ha baze mampuy
mpancnopma, 0Oblla UCHOAL308aAHA O peweHuss Kpaeeol 3adauu 8 HeKoHcepeamusHou @opme. I[Ipednosicervi
KOppeKyuu 3motl cxemvl, KOmMopble 06eCneuuaon xopouiee coomeemcmeue ¢ (HYHOAMEeHMATbHbIMU PEUleHUAMU OJis
cucmemsl ypagueHuti. B couemanuu ¢ moodynem nomoka, ypaeHeuue oug@yznozo mpacnopma Obli0 peueHo O
Kadc0020 epemennozo waea. Ionyuennoe pewiernue daem cpeoHIon KOHYSHMPAyur 3a2ps3HerUst no enyoure, a makoice
NOBEPXHOCHIHYIO KOHYEHMPAYUI0, KOMOopas pacnpoCmpanaemcs 8 KaHae cooepicauiem 0Cmposd.
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