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ABSTRACT: The propagation of ultrashort chirped hyperbolic secant shape and Gaussian pulses in a 
nonlinear lossless fiber is considered. Nonlinear Schrödinger Equation is solved numerically for complex ini-
tial conditions using the Split-Step Fourier and the Beam Propagation Methods. It is demonstrated that a hy-
perbolic secant shape pulse is less sensitive to destructive influence of the initial chirp than a Gaussian pulse. 

1 INTRODUTION 

The fundamental soliton is such an optical pulse, which can propagate without change in shape for arbitrarily 
long distances in a lossless fiber (Majewski 1993, Zakharov & Shabat 1972). It is due to the mutual compen-
sation of the dispersion and the nonlinearity of the fiber. Generation of the fundamental soliton is possible if 
and only if the peak power of the pulse exceeds a certain threshold value. In an ideal case the initial pulse 
should have hyperbolic secant shape and should be free from chirp. The satisfying of the condition of the 
shape is difficult and generation of the pulse, which is completely free from chirp is impossible in practice. 
Therefore the investigation of the influence of the shape and chirp on the pulse generation appears to be use-
ful.  

In the earlier paper (Kaczmarek 1999) influence of the initial chirp on the hyperbolic secant shape pulse 
was investigated. The Nonlinear Schrödinger Equation (NLSE) 
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where A  = envelope function, γ  = nonlinearity, 2β  = dispersion, z  = spatial coordinates, and T  = time 
coordinates, was solved using the Split-Step Fourier Method (SSFM) for the following complex initial condi-
tion 
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where N  = order of the soliton, 0T  = initial pulse width, and C  = chirp parameter. Similarly the standard 
form of the NLSE 
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where q  = normalised envelope function, ζ  = normalised spatial coordinates, and τ  = normalised time co-
ordinates, was solved using the Beam Propagation Method (BPM) for the complex initial condition similar to 
the condition mentioned above (2).  
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In an another paper (Kaczmarek 2000) the method of the designation of the critical value of the chirp pa-
rameter was proposed. The chirp parameter C  reaches the critical value krC , when the value of the station-
ary peak amplitude stationaryA max,  of the fundamental soliton is equal to zero.  

In the present paper it is intended to determine krC  for the Gaussian initial pulse with the use of the 
SSFM and BPM. In the case of the hyperbolic secant shape initial pulse it is going to be proven, that the ap-
plication of the third stage of the evaluating of krC , i.e. extrapolation, is not possible because of the shape of 
the function ( )CfA stationary =max, . Finally it is proved, that a hyperbolic secant shape pulse is less sensitive 

to the destructive influence of the chirp than a Gaussian pulse. 

2 METHODS 

The evaluation of krC  can be divided into three stages. At the first stage the temporary envelope variability 
of the pulse with respect to the propagation distance should be calculated. For this purpose the NLSE should 
be solved numerically using the BPM and the SSFM. The use of the numerical methods is recommended, 
because the analytical solution of the NLSE (1) for complex initial condition (2) is difficult to obtain.  

The SSFM and the BPM have physical grounds. The idea is based on the separate consideration of the 
consequences of the nonlinearity and the dispersion in a short segment of the guide. In case of SSFM it can 
be represented schematically, when (1) is expressed in the operator form (Hasegawa & Tappert 1972, 
Agrawal 1989) 
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formation, the optical field can be expressed as follows: 
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where F  denotes the Fourier transformation and h  is the length of the step. In case of BPM the pulse shape 
after travelling a distance ζ∆  is expressed as a function of the input pulse ( )ζτ ,q  in the following way 
(Yevich & Hermanssen 1983) 
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ζjG  = dispersion operator, ( )2exp qj ζ∆=H  = nonlinearity operator. Mathemati-

cally, the equation (6) is evaluated by consecutively Fourier transforming the pulse envelope q  before mul-
tiplying it by the operator G  and inverse transforming the result before applying the operator H .  

At the second stage, in order to calculate the stationary peak amplitude value stationaryA max,  of the enve-

lope, an averaging filter with a variable window is used. In case of taking advantage of the SSFM at the first 
stage, at the second one the peak amplitude as a function of the distance ( )zfA =max  should be filtered. 

( )zfA =max  is such a function, that independently of the chirp parameter value C , consist of 101 samples. 
The averaging filter functions in agreement with the following algorithm (Hagel & Zakrzewski 1984) 
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where jf  is j - th sample of the waveform ( )zfA =max  after the filtering, n  is the variable length of the 
window of the filter. If the data obtained as the result of the BPM application has to be filtered, in the equa-
tion (7) in place of maxA , maxq  should be inserted.  

At the third stage, which in this paper is used only in case of the Gaussian initial pulse, the critical value 
krC  of the chirp parameter C  is estimated. In this end, a well-known rational extrapolation algorithm (Press 

& Vatterling & Teukolsky & Flannery 1992) is used. The estimation of the critical value of the chirp pa-
rameter consists in seeking a zero of the curve ( )CfA stationary =max,  ( ( )Cfq stationary =max,  in case of the 

BPM). 

3 RESULTS 

Making use of the formulas (5) and (6), computations were carried out for the hyperbolic secant shape and 

the Gaussian pulse when 
km
ps 2

2 6.1−=β , 116.1 −−

= kmWγ  for selected values of the chirp parameter C . The 

dispersion and the nonlinearity parameters were chosen so, that the effective fiber core section was equal to 
280 mAeff µ= . The acceptance of the step 0256.0=∆ζ  in equation (6) had in view the comparison of the 

results received with the aid of the SSFM and the BPM. 
At the third stage of the evaluation of the krC , the following results were obtained (in case of the initial 

pulse being rectangular): 
841227,1=

+krC  (BPM); 831733,1=
+krC  (SSFM); the arithmetic average 83648,1=

+krC ; 
817177,1−=

−krC  (BPM); 82425,1−=
−krC  (SSFM); the arithmetic average 8207135,1−=

−krC . 
 

 
Figure 1.a. Evolution of the hyperbolic secant shape pulse when 375.1−=C  
 

 
Figure 1.b. Evolution of the Gaussian pulse when 375.1−=C  
 



SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY 
Series -  Computer Science  Boundary Field Problems and Computer Simulation  -  43rd thematic issue 
________________________________________________________________________________________________________2001  

 

8 

-16 -8 0 8 16
T [ps]

0

0.2

0.4

0.6

0.8

1

IAI

 
Figure 2.a. Evolution of the hyperbolic secant shape pulse when 375.1−=C ; dashed line – initial shape, solid line - 
shape of the pulse after travelling a distance of kmz 776=  
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Figure 2.b. Evolution of the Gaussian pulse when 375.1−=C ; dashed line – initial shape; solid line - shape of the 
pulse after travelling a distance of kmz 92.361=  
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Figure 3.a. Graphical interpretation of the functioning of the averaging filter; dashed line – evolution of the peak ampli-
tude of the hyperbolic secant shape pulse (i.e. the shape of the curve ( )zfA =max ) when 375.1−=C ; solid line – 

current average of the curve ( )zfA =max  
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Figure 3.b. Graphical interpretation of the functioning of the averaging filter; dashed line – evolution of the peak ampli-
tude of the Gaussian pulse (i.e. the shape of the curve ( )zfA =max ) when 375.1−=C ; solid line – current average 

of the curve ( )zfA =max  
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Figure 4.a. Rational extrapolation is not suitable for determining the zero point (

−krC ) of the curve 

( )CfA stationary =max,  in case of hyperbolic secant shape pulse because of the asymptotic character of the zeroing due 

to inflexion point occurrence 
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Figure 4.b. Graphical interpretation of the rational extrapolation 

−krC  in case of the Gaussian pulse, i.e. zero point 

search of the curve ( )CfA stationary =max,  
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4 DISCUSSION 

Figures 1.a and 1.b show the shape variation of the pulse as a function of the propagation distance for the 
value of the chirp parameter 375.1−=C . Figure 1.a concerns the case of the hyperbolic secant shape initial 
pulse. Figure 1.b shows the transformation of the Gaussian pulse into the soliton. The maximum influence of 
the nonlinearity can be seen at such points where the peak amplitude of the pulse reaches the local maximum 
(i.e. the local narrowing of the pulse). On the contrary the cumulating of the influence of the dispersion can 
be observed where the peak amplitude of the pulse reaches the local minimum (i.e. the local broadening of 
the pulse). The last narrowing of the hyperbolic secant shape pulse from figure 1.a is presented in figure 2.a 
(solid line). The analogous narrowing of the Gaussian pulse can be seen in figure 2.b. Variability of the peak 
amplitude value of the pulse maxA  in case of the hyperbolic secant shape pulse is presented as the dashed 
line in figure 3. a. The solid line (fig. 3.a) illustrates the graphical interpretation of the functioning of the av-
eraging filter, the use of which enables the determining of the stationary peak amplitude value stationaryA max,  

of the pulse for the adequate value of the chirp parameter C . Figure 3.b is corresponding to figure. 3.a ex-
cept for the fact, that figure 3.b. refers to the Gaussian pulse. Making a comparison between figure 1.a and 1. 
b, between 2.a and 2.b as well as 3.a and 3.b it can be noticed, that for the value of the chirp parameter 

375.1−=C  the stationary peak amplitude value stationaryA .max  of the pulse, approaches zero faster for the 

hyperbolic secant shape than for the Gaussian pulse. The comparison between figure 4.a and 4.b confirm this 
fact but only for 375.1<C . For  375.1>C , in case of the hyperbolic secant shape 

stationary
A

max,
 ap-

proaches zero slower (asymptotically) than in case of the Gaussian pulse. It is due to the occurrence of the 
flexion point on the curve ( )CfA stationary =max,  in case of the hyperbolic secant shape pulse. 

5 CONCLUSION 

On the basis of the performed calculation it is found that a hyperbolic secant shape pulse is less sensitive to 
the destructive influence of the chirp than a Gaussian pulse. Furthermore in case of the Gaussian pulse the 
absolute values of the critical chirp parameter satisfy the following condition 

−+
> krkr CC . From the above 

condition arises the fact that in case of the Gaussian pulse a positive chirp is less dangerous than a negative 
one. 
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Kačmareks T., Kačmareks C. Nelineārs gaismas vads kā vide ultraīsu impulsu pārraidei, kuriem ir hiperboliskā 
sekante un Gausa līknes forma ar traucējumiem. 
Apskatīta ultraīsu impulsu pārraide nelineārā gaismas vadā bez zudumiem. Impulsiem ir hiperboliskā sekante un Gausa 
līknes forma ar traucējumiem. Tiek skaitliski atrisināts nelineārais Šrēdingera vienādojums kompleksiem sākuma notei-
kumiem, izmantojot dalītā soļa Furjē un stara izplatīšanas metodes. Tiek pierādīts, ka hiperboliskās sektantes formas 
impulsi nav tik jūtīgi pret kaitīgo sākuma traucējumu ietekmi kā Gausa tipa impulsi. 

 
 
 

Качмарек Т., Качмарек Ц. Нелинейный волновод как среда для передачи ультра-коротких импульсов, 
которые имеют форму гиперболического секанта и кривой Гаусса с помехами. 
Рассмотрена передача ультра-коротких импульсов в нелинейном световоде без помех. Импульсы имеют 
форму гиперболического секанта и кривой Гаусса с помехами. Получено численное решение нелинейного 
уравнения Шредингера применяя методы Фурье с дробным шагом и распространения пучка. Доказано, что 
импульсы имеющие форму гиперболического секанта менее чувствительны к разрушающему действию 
начальных помех, чем импульсы типа кривой Гаусса. 
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