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ABSTRACT: The propagation of ultrashort chirped hyperbolic secant shape and Gaussian pulses in a
nonlinear lossless fiber is considered. Nonlinear Schrodinger Equation is solved numerically for complex ini-
tial conditions using the Split-Step Fourier and the Beam Propagation Methods. It is demonstrated that a hy-
perbolic secant shape pulse is less sensitive to destructive influence of the initial chirp than a Gaussian pulse.

1 INTRODUTION

The fundamental soliton is such an optical pulse, which can propagate without change in shape for arbitrarily
long distances in a lossless fiber (Majewski 1993, Zakharov & Shabat 1972). It is due to the mutual compen-
sation of the dispersion and the nonlinearity of the fiber. Generation of the fundamental soliton is possible if
and only if the peak power of the pulse exceeds a certain threshold value. In an ideal case the initial pulse
should have hyperbolic secant shape and should be free from chirp. The satisfying of the condition of the
shape is difficult and generation of the pulse, which is completely free from chirp is impossible in practice.
Therefore the investigation of the influence of the shape and chirp on the pulse generation appears to be use-
ful.

In the earlier paper (Kaczmarek 1999) influence of the initial chirp on the hyperbolic secant shape pulse
was investigated. The Nonlinear Schrodinger Equation (NLSE)
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where 4 = envelope function, y = nonlinearity, f, = dispersion, z = spatial coordinates, and 7" = time

coordinates, was solved using the Split-Step Fourier Method (SSFM) for the following complex initial condi-
tion
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where N = order of the soliton, 7; = initial pulse width, and C = chirp parameter. Similarly the standard
form of the NLSE
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where ¢ = normalised envelope function, ' = normalised spatial coordinates, and 7 = normalised time co-

ordinates, was solved using the Beam Propagation Method (BPM) for the complex initial condition similar to
the condition mentioned above (2).
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In an another paper (Kaczmarek 2000) the method of the designation of the critical value of the chirp pa-
rameter was proposed. The chirp parameter C reaches the critical value C,, , when the value of the station-

ary peak amplitude |A

of the fundamental soliton is equal to zero.

max,stationary
In the present paper it is intended to determine C,, for the Gaussian initial pulse with the use of the

SSFM and BPM. In the case of the hyperbolic secant shape initial pulse it is going to be proven, that the ap-
plication of the third stage of the evaluating of C,,, i.e. extrapolation, is not possible because of the shape of

the function |A| =f (C) Finally it is proved, that a hyperbolic secant shape pulse is less sensitive

max,stationary

to the destructive influence of the chirp than a Gaussian pulse.

2 METHODS

The evaluation of C,, can be divided into three stages. At the first stage the temporary envelope variability

of the pulse with respect to the propagation distance should be calculated. For this purpose the NLSE should
be solved numerically using the BPM and the SSFM. The use of the numerical methods is recommended,
because the analytical solution of the NLSE (1) for complex initial condition (2) is difficult to obtain.

The SSFM and the BPM have physical grounds. The idea is based on the separate consideration of the
consequences of the nonlinearity and the dispersion in a short segment of the guide. In case of SSFM it can
be represented schematically, when (1) is expressed in the operator form (Hasegawa & Tappert 1972,
Agrawal 1989)

Lo +N), @)
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where D =—j % on o = dispersion operator, and N = ; ;/|A|2 = nonlinearity operator. After some trans-
formation, the optical field can be expressed as follows:
A(z + h,T) = F " {exp(hD)Fexp(AN) (=, T)]} + R(1?), (5)

where F denotes the Fourier transformation and /4 is the length of the step. In case of BPM the pulse shape
after travelling a distance A¢ is expressed as a function of the input pulse q(f,§ ) in the following way
(Yevich & Hermanssen 1983)

4(c.£ + AL) = GH[G(r.O)IBa(r.¢) + 0(ag?), ©)

2
where G = exp( J %Ag” ;—2] = dispersion operator, H = exp( JAS |q|2) = nonlinearity operator. Mathemati-
T

cally, the equation (6) is evaluated by consecutively Fourier transforming the pulse envelope g before mul-
tiplying it by the operator G and inverse transforming the result before applying the operator H .
At the second stage, in order to calculate the stationary peak amplitude value |A| of the enve-

max,stationary
lope, an averaging filter with a variable window is used. In case of taking advantage of the SSFM at the first
stage, at the second one the peak amplitude as a function of the distance |A|max =f (z) should be filtered.
|4
The averaging filter functions in agreement with the following algorithm (Hagel & Zakrzewski 1984)

Z A max (Zi)
fj == 7

n

o = (z) is such a function, that independently of the chirp parameter value C, consist of 101 samples.
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where f is j- th sample of the waveform |A|max =f (z) after the filtering, n is the variable length of the

window of the filter. If the data obtained as the result of the BPM application has to be filtered, in the equa-
tion (7) in place of |A|mIX , |q| should be inserted.

max
At the third stage, which in this paper is used only in case of the Gaussian initial pulse, the critical value
C,,. of the chirp parameter C is estimated. In this end, a well-known rational extrapolation algorithm (Press

& Vatterling & Teukolsky & Flannery 1992) is used. The estimation of the critical value of the chirp pa-
max,stationary = f(C) (|q = f(C) in case of the

rameter consists in seeking a zero of the curve |A

BPM).

max,stationary

3 RESULTS

Making use of the formulas (5) and (6), computations were carried out for the hyperbolic secant shape and

2
1685
km

the Gaussian pulse when S, = , 7 =1.6W 'km™ for selected values of the chirp parameter C . The

dispersion and the nonlinearity parameters were chosen so, that the effective fiber core section was equal to
Ay = 80um* . The acceptance of the step AZ =0.0256 in equation (6) had in view the comparison of the
results received with the aid of the SSFM and the BPM.

At the third stage of the evaluation of the C,,, the following results were obtained (in case of the initial
pulse being rectangular):

C,.. =1841227 (BPM); C,,, =1,831733 (SSFM); the arithmetic average C,,, =1,83648 ;

C,. =-1817177 (BPM); C,,_ =-1,82425 (SSFM); the arithmetic average C,,_ =—1,8207135.
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Figure 1.b. Evolution of the Gaussian pulse when C = —1.375



SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY

Series - Computer Science Boundary Field Problems and Computer Simulation - 43" thematic issue
2001
1
] !
]
0.8 oy
0.6 a
Al
0.4 s
0.2 AN
] /// \
OAT‘YTI x?’xw xx\x\x T
-16 -8 0 8 16
T [ps]

Figure 2.a. Evolution of the hyperbolic secant shape pulse when C =—1.375; dashed line — initial shape, solid line -
shape of the pulse after travelling a distance of z = 776km
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Figure 2.b. Evolution of the Gaussian pulse when C =—1.375; dashed line — initial shape; solid line - shape of the
pulse after travelling a distance of z =361.92km
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Figure 3.a. Graphical interpretation of the functioning of the averaging filter; dashed line — evolution of the peak ampli-
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tude of the hyperbolic secant shape pulse (i.e. the shape of the curve |A|mX =f (z)) when C =-1.375; solid line —

current average of the curve |A|max =f (Z)
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Figure 3.b. Graphical interpretation of the functioning of the averaging filter; dashed line — evolution of the peak ampli-

tude of the Gaussian pulse (i.e. the shape of the curve |A|max =f (Z)) when C =—1.375; solid line — current average
of the curve |A|max = 1(2)
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Figure 4.a. Rational extrapolation is not suitable for determining the zero point (C,,_) of the curve

|4

to inflexion point occurrence

max.stationary — f (C ) in case of hyperbolic secant shape pulse because of the asymptotic character of the zeroing due
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Figure 4.b. Graphical interpretation of the rational extrapolation C,,_ in case of the Gaussian pulse, i.e. zero point
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4 DISCUSSION

Figures 1.a and 1.b show the shape variation of the pulse as a function of the propagation distance for the
value of the chirp parameter C =—1.375. Figure 1.a concerns the case of the hyperbolic secant shape initial
pulse. Figure 1.b shows the transformation of the Gaussian pulse into the soliton. The maximum influence of
the nonlinearity can be seen at such points where the peak amplitude of the pulse reaches the local maximum
(i.e. the local narrowing of the pulse). On the contrary the cumulating of the influence of the dispersion can
be observed where the peak amplitude of the pulse reaches the local minimum (i.e. the local broadening of
the pulse). The last narrowing of the hyperbolic secant shape pulse from figure 1.a is presented in figure 2.a
(solid line). The analogous narrowing of the Gaussian pulse can be seen in figure 2.b. Variability of the peak

amplitude value of the pulse |A|max in case of the hyperbolic secant shape pulse is presented as the dashed
line in figure 3. a. The solid line (fig. 3.a) illustrates the graphical interpretation of the functioning of the av-
eraging filter, the use of which enables the determining of the stationary peak amplitude value |A

max,stationary
of the pulse for the adequate value of the chirp parameter C . Figure 3.b is corresponding to figure. 3.a ex-
cept for the fact, that figure 3.b. refers to the Gaussian pulse. Making a comparison between figure 1.a and 1.
b, between 2.a and 2.b as well as 3.a and 3.b it can be noticed, that for the value of the chirp parameter
C =-1.375 the stationary peak amplitude value |A

of the pulse, approaches zero faster for the

max .stationary

hyperbolic secant shape than for the Gaussian pulse. The comparison between figure 4.a and 4.b confirm this
fact but only for |C| <1.375. For |C| >1.375, in case of the hyperbolic secant shape |A maxationary 3P

proaches zero slower (asymptotically) than in case of the Gaussian pulse. It is due to the occurrence of the
flexion point on the curve |A| =f (C) in case of the hyperbolic secant shape pulse.

max,stationary

5 CONCLUSION

On the basis of the performed calculation it is found that a hyperbolic secant shape pulse is less sensitive to
the destructive influence of the chirp than a Gaussian pulse. Furthermore in case of the Gaussian pulse the

absolute values of the critical chirp parameter satisfy the following condition |C s | > |C k,,_| . From the above

condition arises the fact that in case of the Gaussian pulse a positive chirp is less dangerous than a negative
one.
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Kaémareks T., Kaémareks C. Nelinears gaismas vads ka vide ultraisu impulsu parraidei, kuriem ir hiperboliska
sekante un Gausa liknes forma ar traucéjumiem.

Apskatita ultraisu impulsu parraide nelineara gaismas vada bez zudumiem. Impulsiem ir hiperboliska sekante un Gausa
liknes forma ar traucéjumiem. Tiek skaitliski atrisinats nelinedrais Srédingera vienddojums kompleksiem sakuma notei-
kumiem, izmantojot dalitd sola Furjé un stara izplatiSanas metodes. Tiek pieradits, ka hiperboliskas sektantes formas
impulsi nav tik jutigi pret kaitigo sakuma traucejumu ietekmi ka Gausa tipa impulsi.

Kaumapek T., Kaumapek Ll. Hesqinneiinblii BOJTHOBOJ KaK cpejia AJid NepeJayM yJIbTPa-KOPOTKMX UMIYJbCOB,
KOTOpbIe UMEIOT (popMy runepooInYecKoro cekanta u kpusoii I'aycca ¢ momexamu.

Paccmompena nepedaua ynempa-xopomkux umMnyibco8 8 HeluHeluHoM ceéemosode 6e3 nomex. Hmnynscol umerom
Gopmy eunepbonuueckozco cexanma u xkpugou Ilaycca ¢ nomexamu. Ilomyueno uucienHoe peuwieHue HeIUHEUHO20
ypasHenus Illpeouneepa npumensan memoosvr Dypve ¢ OPOOHBIM WAOM U pachnpocmpaneHus nyuyka. [okazano, yumo
UMNYTILCHL UMerowue Gopmy UunepooIUtecKo2o0 CeKanma MeHee YY8CMBUMENbHbI K pa3pyuiaruemy Oeucmsuio
HAuanbHblX NOMeX, YeM UMnYabceol muna kpugou I aycca.
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