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ANALYTICAL SOLUTION OF THE MHD PROBLEM TO THE FLOW OVER THE
ROUGHNESS ELEMENTS USING THE DIRAC DELTA FUNCTION
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INTRODUCTION

In the designing of the present reactor tokamak the value of the Hartmann boundary layer
in a strong magnetic field becomes commensurable with the size of the roughness of the
surface of a channel’s wall. Therefore, it is need to study the influence of the roughness of the
surface on the MHD flow of the conducting metal, which is planed to use in the system of the
cooling of the reactor.

In paper [1] it is solved the MHD problem on the flow of conducting fluid in the half

space, arising in the consequence of the roughness of the surface in the form z = )?0]7()?)

with the conditions that the values V(}?)‘ and V’(}?)‘ are small. These assumptions give

opportunity to transfer the boundary condition for potential of current ®(%,Z) from surface
z= ;?0;(;) to plane ZzZ =0 and neglect in this boundary condition term
f'(f)&)&)()?,O)/af. The attempt takes into account that term lead to integral equation for
unknown function o®(%¥,0)/0% , which one can solve only numerically. In paper [2] this
problem is solved for the case when the roughness of surface z = ;?Of(f) has the rectangular
form: Z=%,,if Xe (-L,L) and 2 =0, if X [-L,L]. As a result the derivative f’(?c’ ) in
boundary condition is expressed through the Dirac delta function and instead of integral
equation for function f’(¥)0®(¥,0)/d% is appeared unknown constant 9®(L,0)/d%. The last
is permitted to solve this problem analytically and estimate the error, which give the neglect

of term f’(?c’ )0®(%,0)/ 9% in mentioned above boundary condition. Besides the asymptotic of

this problem in a strong magnetic field is obtained. In this paper similar problem for the
constant cross-section of prism bounded by step-function form is solved.

1 THE STATEMENT OF THE PROBLEM

The geometry of the flow, which was considered in author’s paper [2], is shown on Fig.1.
The conducting fluid is located in the half space z >0, —eo <X,y <+4oo. The external

magnetic field has the form
B° =Bye, . (1.1)
The boundary Z =0 is not conducting. A steady current flows with the density ] = j,e.
in the direction of the x-axis. If the surface Z =0 is ideally smooth then the flow is absent
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i
because electromagnetic forcebe = xg is constant and rotlg =0. In paper [2] the roughness
of the surface Z =0 with cross section in the form of rectangular has been used (see Fig.1):

o m e N JZO’ ~L<X<L,
2= /(D) =2%hE+1)-nE-L)]= - (1.2)
0, [¥>L,
o . : ~ _ ]0,X <0,
where 1(X) 1s the Heaviside step function: (x) = L%50 (1.3)
, X >0.

In this case the full current is equal to j=j, + j(X,Z) and the flow of the fluid with the

velocity V = I7y (x,2)e , arises in the direction opposite to the y axis (Fig.1).

}J
A

1}/1 ,z)=V_ ,zp
Tﬁez{o,o,Bo} J&a=r, 02z,

=%, f(X) =1 G +L)-nE-1)]

AZ

v

| [ (] y
L
e

Figure 1. The geometry of the flow in paper [2].

In this paper we consider the similar problem with the constant cross-section in the form
of the step-function (see Fig.2):
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Figure 2. The constant cross-section of the roughness in this paper.
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(z. [x|<L,
F=F®)=1{%, L <[|<L (1.4)

0, x> L
or Z=F(X) =, LX) +(F ~ 1) [,(3), (1.5)

where

L@ =nE+L)-n(xX-L), f,(x)=n(x+L)-n(x-L). (1.6)

We will deduce the boundary condition for the potential &)(f ,z) of an electrical field on
the surface Z = F (x). The normal component of the current on this surface must be equal to

zero because the boundary z = )?OJN”(Y) is not conducting, i.e. must be j-n =0 on the surface
(m is the unit vector of the normal to the surface).

Using formula n = grad[Z — F(3)]//1+ F*(¥) we obtain

n= [ﬁ’(%)ex +ez]/,/1+ﬁ’2($), (1.7)

F@) =706+ 1) - 6G - L))+ (7 - Z0G+L)-6G - L), (1.8)

where

0(X) is the Dirac delta function.

Putting the n from (1.7) and ] = (jo +7 (%, E))ex +7.(%,%)e, into j-n=0 and using
formula j = O'[— grad® + \N7><]N3], ie. . =-00®/oK, j. =-00®/0Z on the surface,
where V =0, we obtain the boundary condition for the potential ®(¥,Z):

T=FRX): 0 2=F®) |j,-c= (1.9)
zZ

where function F ‘(x) gives formula (1.8).
We do in this paper the single approximation: we transfer the boundary condition (1.9)

from the surface 2 = F(¥) to the plane % =0, i.e. we suppose that only the value ‘1? (x )‘ is
small. As a result, we obtain the boundary condition for the potential in the form
F=0: 9B/9Z =] jo +9B/IFFF). (1.10)

We don’t neglect the term 0®/d% in boundary condition (1.9) and as a result we obtain
the new coefficient in the solution used in paper [1].
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We use the following dimensionless quantities using the values L, v/L, B,

vpv/ioc /L, vypvo/ L* as scales of length, velocity, magnetic field, potential and current,
respectively. Here o, p, v are, respectively, the conductivity, the density and the viscosity
of the fluid. Then the MHD equations and the boundary conditions have the form (see [3]):

AV, -Ha’V, +Ha 0®/dx =0, A®=Ha 9V, /dx, (1.11,12)

z=0:V, =0,00/3z =[-A4+ F(x,0)]F(x), (1,13,14)
F'(x) = x,[6(x+1) = S(x+ D]+ (1, — x)S(x+ L) - (x—L))], (1.15)
X’ +7° 50 V50,00, (1.16)

where A=0%/dx*+0*/dz, Ha=B,L\o/pv is the Hartmann number,
A= joL? (v\pve), Xy =X,/ L, xy =X,/ L and

F(x,0) =aaij . (1.17)

z=0

2 THE SOLUTION OF PROBLEM (1.11)-(1.16)

In order to solve problem (1.11)-(1.16) we use the symmetry of this problem with respect
to x: the function Vy(x,z) is an even function, ®(x,z) is an odd function with respect to x.

This means that functions Vy(x,z) and ®(x, z) satisfy additional boundary conditions:

av,
2=0: —2=0,d(x,0)=0. @2.1)
ox

Therefore problem (1.11)-(1.16) can be solved by means of Fourier cosine and Fourier
sine transforms (see[4]). Namely, we apply the Fourier cosine transform with respect to x to
equation (1.11) and to Vy in boundary condition (1.13) and the Fourier sine transform to
equation (1.12) and to d®/dz in boundary condition (1.14), putting:

V, (A,2)= \/z V,(x,z)cos Axdx (2.2)
4 0

D (4,2) =\/% ®(x, z)sin Axdx . (2.3)
0
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As a result we obtain the following system of ordinary differential equations for unknown
functions V,“(A,z), ®* (A, 2):

2 c
-V, + dZ; —Ha’V, + Hah®* =0, (2.4)
,, d'®° ;
NP+ e +Ha\V,  =0. (2.5)
We apply also transforms (2.2) and (2.3) to boundary conditions (1.13) and (1.14):
z=0: V=0, do =~N27D, sinA+~27xD,sinAL, ; z >V ", ®° -0, (2.6,7)
) - . )
where D, = 2[4 F(1,0)],D, = X~ 2[4 F(L,0), (2.8)
/4 /4
F(1,0)= 9@ at x=1, z=0, F(L,,0)= il at x=1L,, z=0 (2.9)
ox ox

are the unknown constans. The solution of the problem (2.4)-(2.7) has the form:

D'(,2) = #(klekzz +kye"* ) [N27D, sin A ++2D, sin AL, ], (2.10)
V<(A,z)= ﬁ(ek‘z — ") [\27D, sin A+~27D, sin AL, ], 2.11)

where
k=~ + 1+ ), ky =& +u* —p), 2u=Ha. (2.12)

Applying to formulae (2.10), (2.11) the inverse Fourier sine and cosine transforms, we
obtain the solution of problem (1.11)-(1.16), containing unknown constants F(1,0), F(L,,0):

®(x,z) =D, (ke +k,e* )Sl/’;z’1 sin AxdA +
0
T wo\SINAL, .
+D, (ke +k,e™) sin AxdA, (2.13)

0 2'2
V,(x,z) =D, (ek‘z —et* )#cos AxdA +

0
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sin AL
+D, (eklz — e )—1

0

cos AxdA. (2.14)

The components j_ and j, of the induced current density we obtain using law:
§ = o grad®(®,7)+ Vx B, 2.15)

where V=7, (%,%)e,, B=B!(%,%)e, + Be, . (2.16)
In the dimensionless quantities formula (2.15) has the form

j=—grad®(x,z)+ HaVxB, (2.17)

where V=V (x,z)e,, B=B,(x,2)e, +e,. (2.18)
Substituting (2.18) into (2.17) one gives

j=-grad®(x,z)+ HaV (x,z)e,. (2.19)

From (2.18) it follows, that

Jx =—aa;f+HaVy(x,Z), J. =—aaif (2.20)
or, using formulae (2.12), (2.13) and (2.14),
j=-D, (k" +k, et )SmACOSAY ACOSAX i b, (kb + e )SmAL COSAX ’U‘l;os’b‘ A,
0 0 (2.21)
J.= —Dlm(eklz +e'” )sinﬂsin AxdA - D, m(eklz +e' )sin AL, sin AxdA . (2.22)
0 0

For the evaluation of unknown constants F(1,0),F(L,,0) orD,,D, in formulae (2.13),
(2.14), (2.21) and (2.22) it is necessary to use integral (2.13) and evaluate the limit

F(L0)=D, lim  (,e™ + kzeklz)smﬂﬂﬂdm D, lim (ke + kzeklz)sm/ii—lms/id .
0

z—=+0

(2.23)
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and similar limit for F(L,,0). Differentiation with respect to x under the integral singe in
(2.13) is correct in the region 0<z, <z <+e0,0<x<+oo because this integral, also as
corresponding integral (2.23) of partial derivative with respect to x of integrand in (2.13) is
majorized in this region. However, if we put z =0 under integral sign in (2.23), we obtain the

divergent integral, which is converged only in the sense of Abel (see [4]). For example, for
the first integral in the right hand side in (2,23) we obtain:

I : msmjﬂ dd=lim = e [P e sm;ﬂ da (2.24)

5—+0 0

or, after evident transformations

oo 2 . oo
[=1lim e —*# Sin24 a1+ lim ™ sin24dA. (2.25)
0

5—>+00 ,lz+ﬂ2+i

The first integral in the right hand side of (2.25) converge in the usual sense, but the
second integral converge only in the sense of Abel and equal to 2 (see [4]). However such
method gives the solution, which tends to zero as Hartmann number Ha tends to infinity. The
last contradicts to the physical sense of problem. Therefore it is need to transform integral
(2.13) to such form that after passing to limit z —+0 we would obtain the integral,
converging in the usual sense. For this purpose we use formulae:

oo

T _ Hz \/ﬁ
e cosaldh = ————=K uvz" +a” ), (2.26)
0 \sz +a2 l(”l )

m\/ﬂzﬁuze_zmcosaﬂa%: H# { pe” 2Kz(,l.z\/zeraz)—Kl(,l,lxlzeraz)—|,
0

V22 +a* | V2 +a

(2.27)

where a 20, z>0 and K, (z)is the modified Bessel function of the second kind of order
v (v=1, 2). As aresult, we obtain (the details see in [5]):

x+1 2 2 x+L, 2 2

K +1 'K \uNz"+t 1

V (x,z)=—piz-shuz| D, —2 dt + D, 4(¢”—)1 z dt (2.28)
' e ANZE e, ANz +E

J(x,2) = chpz{D,[F(1+ x) = F(1—x)|+ D,[F (L, + x) = F(L, — x)]} + uV’, (x,2) (2.29)

where

Fla)= { 1 2 K4 )k )sz. (2.30)

y7i
0\/22+t2 \/zz+t

The evaluation of integral (2.22) gives:
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J.(x,2) = gz - chpiz[ D, G(x, 2.1) + D, G (x, 2, L] (2.31)
where

Grz.L) = K (,uqlz +(L, —x) ) 1(,uw/z2 +(L, +x)° ) 2.32)
Nzl + (L, —x) Nz (L +x)

We transform 0®/dx, using formulae (2.13), (2.26), (2.27):

od

ox

K (,u\/z +t ) 1(/1\/22+t2)—|dt+

= chh,uz #

x=1 o\/z +1° L/z +1°
K(/t\/z +1° )itl

+,uzsh,uz
0ovVZ

L+1
u

Ll_1\/Zz+l‘ |:\/Z +1°

L+l
+/fz-sh/,zz \/TK(/U\/Z +1° )dl (2.33)
z

The integrals in the right hand side of formula (2.33) are diverged if z = 0. Therefore we
use the substitution

K (,u\/z +t ) l(yx/zz+t2)—|dt+

= D,{chuz

t=zE, dt =zd§. (2.34)

Then from formula (2.33) follow

2

[ 2
9 e 1z ) —\
ox x:1_ DI{L hwo\/l—}—gz [\/14_52 Kz(fz 1+f ) Kl(/—Z 1+§ )dg‘f‘

x v )fél

:
# o - K - +&7
Tkﬂzq b { e S

fushie ﬁKl(,ww/Hfz)de (2.35)

z
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For pass to limit at z — +0 in formula (2.34) we use formula

K, (2)= l(n —1)!(2\ ,n=123,...at z—>+0,
2 z

. 1 2

1e. K (z)=—, K,(z)=— at z—>+0. (2.36)
z z

As a result we obtain from formula (2.35) that

2 2
z —| z

im%® = piiml |2l e D limushur —de-

z—+0 ax - 7540 7 0 (1 + 52) 1+§ z—+0 0 1+§

L+l _| L+l
1~ 2 1 : 1
- D, lim— - dé— D, lim u - sh ——d¢. 2.37
2 - (1+§2)2 1+ &2 §-D, am A ,UZLl_l 148 ¢ (2.37)

The second and the last limits in the right hand side of formula (2.37) are equal to zero,

but the first and the third limits gives indefiniteness of the form % because

A S P T Y (238)
(g ) 148 7 (egr) T 2

Consequently, from formula (2.37) we obtain

L+l
z z —|
limag —Dlm1 2 5 lzdf D211ml 2 = lzdéf—
z%+08x — 2540 7 (1+§2) l+§ Z_>+OZL1—1 (1+§2) 1+§
1 [ 1
. 1 2 L +1
=-D, lim - (——2 - D, lim 2 - ! . (— — )
z—+ z—>+ 2
T B EE 14 Lt 1+(th) z
z? z 72 z
I 1
L -1 D 2D
+D, lim 2 ~— ! - (— L \:——1+—22. (2.39)
z—+0 (1+(L1_1)2] 1+(L1—1) z 2 l_Ll
P 2
z z

From (2.8) and (2.39) it follows
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1 2D
F(,0)=——D+—2_. (2.40)
27 1-1,

Similarly for F(L,,0) we obtain:

2D D
F(L0)=—21_ 22 2.41
L0= = @41)
We remind (see formula (2.8), that
D, =% 04-Fa0), D, =% "% 14— F(L,0)]. (2.42)
T T

Consequently formulae (2.40) and (2.41) are the system of two equations for two
unknown constants /(1,0) and F(Z,,0), i.e. for two unknown constants D, and D, .

Substituting these constants into formulae (2.13), (2.14) and (2.21), (2.22), we obtain the
solution of problem (1.11)-(1.16).

3 THE ASYMPTOTIC EVALUATION OF THE PROBLEM AND THE NUMERICAL
RESULTS FOR THE CASE ¥, = %,

The asymptotic of functionsV (x,z) , J.(x,z) j.(x,z) we get from integrals (2.14),
(2.21) and (2.22), using the formula, which holds at & — oo

2 2
—k, :(1//12 +u’ —u)+2u=2ﬂ+’1—z2ﬂ+’1—, (3.1)
A +u’ +u 2u
/12
—k, =\ A +u* —pu=~—, 2u=Ha. (3.2)
2u

Substituting (3.1) and (3.2) into integrals (2.14), (2.21), (2.22) and using the Poisson
integral (see [6]), we obtain the asymptotic formulae, which holds for the whole region
0<z<+4eo asHa —>oo:

V,(x,2) = —%Dl (1= Jyr(x, 2), (3.3)
l/f(x,Z)=erf[ﬁ1+x1+erJ{ﬂl_ﬂ , B=05VHa, (3.4)
Vz Jz

10
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T ~p (1)’ ~p(1-x)
(1+Ze_ZH“J (I+x)e = +(1-x)e - ,

(3.5)

1 B-xf  -p ) ]
J. :EDI,BN/E(1+€ZH“){€ o —-e F . (3.6)

From formulae (3.3) and (3.6) it follows all the above-obtained results about boundary
layers of functions V (x,z) and j_(x,z) as Ha — .

j. =D, {%HanH"l//(x,z)+

B
Nm

We see from formula (3.3) that at Ha — o> we have:

1) Component V| =%Dl = constant inregion Ha' <z< Ha.
2) Component V, is changed from 0 till V, = %Dl =V inregion0<z< Ha .

3) Component ¥, is changed from V, till zero in region Ha < z < +oo.

Besides from formula (3.3) it follows that on the lines x =+1, 0 < z <+ component
V., — 0.5V, as Ha — . That means that the two new boundary layers exist in the regions:

1—x 1+x

—g<,8\/_ <& and —g<,8\/_

where € is some enough small positive number. In these regions component ¥, is changed

<e, (3.7)

between —V_ and zero. It is impossible to get these two new boundary layers from formula

(2.14).
Similarly, we see from (3.6) that at Ha — oo

1. Component j_ exponentially tends to zero everywhere except for the two regions, lying
inside parabolas

z=05u(x+1)* and z=0.5u(x—1)". (3.8)

because in this case both the exponent in the square bracket of formula (3.6) tends to

Zero.
2. Inside the region bounded by the first or second parabola in (3.8), where one of the

exponents in the square bracket of (3.6) does not equal to zero, component j = % ,

i.e. tends to infinity as (4 — oo.
3. Finally, we see from formula (3.5) that at Ha — o the current component ; (x,z) tends

to zero everywhere except for the region 0<z<Ha ' because in this region

11
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exp(—zHa) # 0 and the function w(x,z) tends to 2 everywhere except for the two regions
in formula (3.7).

For the evaluation of Hartmann numbers at which the asymptotic formulae (3.3)-(3.6) are
correct we compare the numerical results for the component j_ (x,z), obtained by exact
formula (2.31) and by asymptotic formula (3.6). These numerical results for Hartmann
numbers Ha =10, 30, 50 are shown on Fig.3 . For Hartmann numbers Ha >10 the results
obtained by exact formula (2.31) and by asymptotic formula (3.6) practically coincide.
Calculations for functions V (x,z) and j (x,z) by exact formulae (2.14), (2.21) and by

asymptotic formulae (3.3), (3.5) give coincidence at the same Hartmann numbers .

= Ha=10 Iz Ha=30
1.4F i
12} -

1b -
osf
06
0.4F
ozf

Figure 3. The graphics of the z-component
of current by exact formula (2.31) and by
formula (3.6) from z=1 (two upper lines)
till z=3.5 (two lower lines) through
Az =0.5. Function J.(%2) is odd with
respect to X.

"

3 )

On the Fig.4 are shown the numerical results of calculation of the current’s component
J.(x,z) by asymptotic formula (3.5) for Hartmann numbers Ha=10, 30 and 50. We can see,

that the sign of function j (x,z) is changed in the neighborhood of line x =1, 0 <z <+4eo.

It means that the streamlines of current (x,z) are changed their direction on the opposite in
the neighborhood of this line.

12
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I Ha=10 Ix Ha=30
ozt
0.1
. b3
* 05
01t
02

Ix Ha=50
0.2 Figure 4. The graphics of the x-
component of current by asymptotic
o1 formula (3.5) from z=1 (the upper lines
« Inregion 0<x<1) till z=3.5 (the lower
n.s lines in region 0<x<1) through
o Az=0.5. Function j (x,z) is even with
0.2 respect to x.
4 CONCLUSIONS
1. The analytical solution of the two dimensional problem on the MHD flow in half space

The

z 2 01in the consequence of the roughness of the boundary of special form is obtained.
The roughness with constant cross section, bounded by step-function, is located along the
y axis. There are the external current which flows parallel to x axis and the external
magnetic field parallel to z axis. The two dimensional MHD flow in the direction
opposite to y axis arises, only if the roughness of the boundary is present.

The analytical solution is obtained at the single approximate assumption that the height of
the roughness is small .The solutions for the y component of the velocity of the fluid and
for the x component of the induced current are obtained in the form of improper integrals
of elementary functions. On the other hand, the z component of the induced current is
expressed through the Bessel function.

The asymptotic solution of the problem at Hartmann number Ha — o is obtained in the
form of elementary functions. For Hartmann numbers Ha > 10 the exact and the
asymptotic solutions practically coincide.

first author thanks his friend V. Stekolnikov for the ideal atmosphere offered in his

country-cottage for the work of this paper.
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Antimirovs M., Caddads I. Analitisks atrisinajums problemai par MHD plasmu pustelpa ar negludu
robezvirsmu, izmantojot Diraka delta funkciju.

Raksta analitiski atrisinata probléma par MHD pliismu bezgaliga pustelpa Z > 0, kura satur specialas formas
negludumus uz robezas Z = 0. Aréjais magnétiskais lauks darbojas perpendikulari robezai Z = 0. Darbojas

ari aréja strava, kura ir paraléla robezai Z =0, ja robeza ir gluda. MHD pliissma rodas tikai tad, ja eksisté
negludumi. Izvéloties negluduma formu prizmas veida ar Skersgriezuma laukumu, kurs ierobezots ar léciena
funkciju, izdevas iegiit ieprieks minétas problémas analitisku atrisinajumu, izmantojot Diraka delta funkciju.
Tiek izmantots tikai viens pienémums, ka prizmas Skérsgriezuma augstums ir mazs. Darba ir iegits minétas
problemas analitisks atrisinajums pie lieliem Hartmana skaitliem. Noteikti dazadi Skidruma pliusmas un
inducétas stravas robezslayi. Veikti inducétas stravas blivuma vektora x un y komponensu skaitliskie aprékini.

Antimirov M.Ya., Chaddad L.A. Analytical solution of the MHD problem to the flow over the roughness
elements using the Dirac delta function.

Analytical solution of the problem about MHD flow of conducting fluid in half space Z > O with a roughness of
special form on boundary Z =0 is obtained. External magnetic field is perpendicular to boundary Z =0.
There is also external current, which is parallel to boundary Z = 0, if the roughness is absent. The flow of fluid

arises only in the case, if the roughness of boundary Z =0 exists. The choice of the roughness in the form of
infinitely long prism with constantsr cross-section, bounded by the step-function, allows to obtain the analytical
solution of this problem using the Dirac delta function. The single approximate assumption that the height of this
cross-section is small is used. The asymptotic solution of the problem at the large Hartmann numbers is
obtained. In this case the various boundary layers of the flow and the induced current are found. The results of
numerical calculations of x- and y-component of induced current are present.

AntumupoB M.SA., Yagnang U.A. AHanuTtndyeckoe pemienue 3amgauu 060 MI'Jl TeyeHHMH MO 3j1eMeHTaM
LIePOXOBATOCTH C MOMOIIBIO AeabTa pyHkuuu Jupaxa.

Honyueno ananumuueckoe peutenue 3aoauu 006 MIJ] meuenuu 6 noaynpocmpauncmee Z >0 c snemeHmamu
wepoxosamocmu cneyuanvhoti opmor na epanuye z = 0. Brewnee macnummnoe none nepnenouxyiapHo
epanuye z = 0. 3adan maxce enewnuti mox, komopwui napainenen epanuye z =0, ecau wepoxosamocmo

omcymcmeyem. MI ][ meuenue 8o3HuUKaem moibKo Npu HAIUYUU wiepoxosamocmu. Beibop wepoxosamocmu &
sude npusmbl C CeueHueM, OSPAHUYEHHOM CMYneH4amoll @yHKyuel, NO380AUL NOAYYUMb AHATUMUYECKOoe
pewerue 3motl 3a0ayu ¢ nomoubio dervma Gyuxkyuu Hupaxa. HMcnonwv3o08ano eOuHcmeeHHoe NpUubIudx*CeHHoe
npeononodicerue, Ymo 8blCOMa CceyeHuss npusmvl asisemca maio. Ilonyueno makace anarumuyeckoe peuieHue
oannoll 3a0auu npu 6oavwux yuciax I apmmana. Obnapysicenvl pasiuyHsle NOZPAHUYHbIE CLOU O MedeHUs.
arcuoKocmu u 011 UHOYYUPOBAHHO20 MoKda. IIpusedenvl pe3yrbmamsl HUCIO8bIX PACHEMO8 X- U Y- KOMNOHEHM
8EKMOPA NAOMHOCIU UHOYYUPOBAHHO20 MOKA.

15



