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1 INTRODUCTION

Formula for the change in impedance used in literature (see [Zaman, Gardner & Long,
1982], [Satveli, Moulder, Wang & Rose, 1996]) has the form

zmi =020 PRy (1)

]2

where V. is the region of the flaw, o, and o are the conductivities of the flawed and
flawless regions, respectively, f » 1s the amplitude electric field vector in the flawed region,

E is the amplitude electric field vector in the same region in the absence of the flaw, I is the
amplitude current vector density.

The displacement current is neglected in Eq. (1) as it is used in the problems of eddy
current testing and in the case of harmonic oscillations of the external current with frequency
o (see [Antimirov, Kolyshkin & Vaillancourt, 1997]). In the present paper a new formula for
Z™ is obtained in more convenient for computations form:

w(c,-o0) PP

VA 2 A-A,dV, (2)
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where 4, is the amplitude vector potential in the flawed region, A is the amplitude vector

potential in the same region in the absence of the flaw (i.e. the case when all physical
properties of region V,. are the same as the physical properties of the conducting region

outside of region V), @ is the frequency.
The aim of this paper is to prove that the right-hand sides of Egs. (1) and (2) coincide, i.e.

pop
EE av=—w* 4 Aav. 3)
vy Vi

]J
Note that the relationship between vectors f and A4 in the case of harmonic oscillations
of the external current with frequency @ is given by (see [Antimirov, Kolyshkin &
Vaillancourt, 1997]):

g = —ja)zgl) + %grad divﬁ{) , 4)

1

where ];12 = U (0+ je,£w) if the displacement current is taken into account and

1;12 = u,p1o if the displacement current is neglected, £, and g, are the electric and magnetic
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constants, respectively; € and u are the relative permittivity and relative magnetic

permeability of the medium, respectively; j=+/—1 is the imaginary unit.
It follows from Eq. (4) that Eq. (3) is correct if

divA=0, divd, =0. (5)

In fact Eq. (5) is only valid in the case of a homogeneous half-space as the conducting
region and the external current located either on a single-turn coil or double conductor line in
the plane parallel to the half-space. Eq. (5) is also valid if the flaw of the non-homogeneous
half-space is a cylindrical body coaxial with a single-turn coil carrying the external current
(see [Fastrickii, Antimirov & Kolyshkin, 1983], [Fastrickii, Antimirov & Kolyshkin, 1984])
or if the flaw is an infinitely long cylinder parallel to the double conductor line carrying the
external current (see [Antimirov, Kolyshkin & Vaillancourt, 1994]). In all other cases,

a’iv,tlj #0, div ;IJF #0 1n region V.. However, Egs. (1), (2) and (3) are still true as it will be

shown below.
It follows from Eqgs. (3) and (4) that for a flaw situated in the arbitrary region V.

P~ p b~ p p p
[—jwA k’graddivA, — joA, -k.graddivA+ graddivA- graddivA,1dV =0, (6)
VF
-~ A . . N . M
where k> =u,u(o,+ je,é. ). At first sight, assuming the continuity of the functions 4,

b b b b P :
A, graddivA, graddivA, , one may conclude that graddivA=0, graddiv A, =0 (using
the known theorem: if a function f(M) is continuous in a closed region V, and for any

region Ve V.. the formula Vf(M) dV =0 is valid, then f(M)=0 for all MeV,).

However, it is not true. In fact, by changing the region V., the functions 1511 and ;IJF are
changed too. Therefore, Eq. (6) is also valid if div A # 0, div ,ZF # 0 1in the region V.. In the
previous studies (see [Zaman, Gardner & Long, 1982], [Satveli, Moulder, Wang & Rose,
1996]) trying to prove formula (1) for impedance change, it was assumed that divltlj =0 in

Eq. (4). Besides, in [Zaman, Gardner & Long, 1982] was assumed that the scalar potential
gives change in the static field only. That statement is not true. In [Satveli, Moulder, Wang &

Rose, 1996] was suggested to use the Coulomb’s gauge, i.e. divz = 0. At the same time, the

authors use the following equation for the vector potential 1511 :
Ad+ kz,tljzuo,uf“’, k> =—jwouu . (7)

It is well known that Eq. (7) is not correct in this case. In fact, in the case of Coulomb
gauge the equation for the vector potential is more complicated (see [Antimirov, Kolyshkin &
Vaillancourt, 1997], p.10), and has the form

M P
p 94 d 94) )
AA=u0ua(V(p+E)+yoeoue§(V(p+§ _ﬂoﬂ}} > (8)

where ¢ is the scalar potential. Moreover, even the authors of the present paper in their

previous paper [Antimirov & Dzenite, 2002] mistakenly stated that Eq. (1) is not correct,
. 4 4 . .

using the fact that div4#0, div A, #0 in the region V.
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Note also that by taking into account the displacement current in this problem, the

coefficient Or [; 9 in Egs. (1) and (2) is transformed into the coefficient
0,—0 Jjwe,(é,—€
F]z + .] 05217 ) , (9)

where £, and € are the relative electric permittivity in the flawed and flawless regions,
respectively.

2 THE PROOF OF FORMULA (1)

The proof is performed taking into account the displacement current. In the literature (see
[Zaman, Gardner & Long, 1982], [Auld, Muennemann & Riaziat, 1984]) formula (1) is
usually obtained without describing the source of external current. This fact makes difficulties
for estimating the degree of mathematical basis of the formula. In the present paper, the
emitter is located on a closed line described in the parametrical form in polar cylindrical
coordinates (p,¢,z) by the equation:

Jp = p(9),
z=2z(p),

where p(@),z(¢) are prescribed functions, ¢ is the parameter. Equation describing any

closed line can be written by using formula (10) and choosing the appropriate system of the
rectangular coordinates (x, y,z).

0<@p<2r, (10)

Consider a sphere S, of radius R with an interior arbitrary form closed surface S (see
Fig.1).
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Fig.1. The disposition of the regions and closed surfaces.
The surface S covers the region containing a single-turn coil and a conducting medium.

A closed surface S, bounds a region V,, containing only a single-turn coil. A closed
surface S, bounds the region V' containing the conducting medium with the conductivity
o =const and the relative permittivity € =const and a region ¥, with the conductivity

0, =const and the relative permittivity £, = const. The region V. is bounded by a closed

surface S, . Finally, V is a region bounded by surfaces S and S,, and V isa region
bounded by surfaces S, S, and S, .

In the case of harmonic oscillations of the external current with the frequency @ in the
closed coil, Maxwell’s equations for the complex-valued amplitude electric field vector f

and the complex-valued amplitude magnetic field vector ﬁ have the following form (see
[Antimirov, Kolyshkin & Vaillancourt, 1997]):

curlgz—ja),uo,uﬁ, (11)
curl B = (o + je, ) +1°, (12)

where ;} ¢ is the complex-valued amplitude external current vector density.
According to equation (10), one can write

= 1h(p,0)51p - p(@)181z - (@)1E., (13)
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where d(x) is the Dirac delta function, gf is a unit vector of the tangent to the line (10), 7 is
the complex-valued amplitude current vector density. The coefficient 4(p,®) in (13) has the
form:

h(p.p) = %Jpz P @F 2@ . (14)

Pe

This coefficient is chosen so that the triple integral of over the all space is equal to the

following constant:

+oo4-o0+00
‘Pe

—00—00—00

dv=IL,, =o0,,E. L

coil coil ~ coil " coil » (1 5)

where o, is the conductivity of the coil, L, is the length of the closed contour (10) with

C

the current density [ =const, E,, L, 1s the electromotive force that is necessary for

coil ™ coi

supporting the current of the density / = const in the closed contour (10). It follows from Eq.
(10) that the contour’s length, L_,, is equal to

coil »

2r

L= P@F +[p @) +[Z (@) dp. (16)
0
Eq. (15). By using the main property of the delta function and using Eq. (16), we obtain

+oofootoo
Pe

—00—00—00

In order to prove Eq. (15), we substitute given by Eq. (13) into the integral of

2r o0 1 - y
dydydz =1 dg ;Jpz +[P'(@)F +[Z(@)F pdpx
0 0

+

X OLp—-p@]lz—2(pldz=1 p* +[p (T +[Z (@) do=

oo 0

—IL =0 E L . (17)
coil coil coil " coil

Thus, formula (15) is proved.
Explore the system of Egs. (11)-(12) for two following cases: for the case when the flaw is

ﬁzﬁabs), and in the
presence of the flaw (by substituting E = f o ﬁ = ﬁ ). Then assuming that the external

absent, 1.e. 0, =0 in the region V. (by substituting E =E

abs >

current vector density F ¢ 1s the same in both cases and it is defined by Eq. (13), one obtains

—eurl £, = jouut,,. (18)
curll—}I)abS = /EbeEabS L1 , (19)
—curlEF =jaw0ﬂﬁF, (20)
curlﬁF:EﬁgF+ye, (21)

where

2

~ o+ jeéw, M(x,y,z)eV,
_J J& (x,9,2) @)

abs

JEE, M(x,y,z)eV,
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. JO-F + jEEr @, M(x,y,2)€V,,
k2, M(x,y,z)e V..

In the above, Eab and ﬁab
1) the tangent components of the vectors ga,m and ﬁ . are continuous on the surface S, (see
[Antimirov, Kolyshkin & Vaillancourt, 1997]);

2) vectors Ea,” and ﬁ ., Satisfy the radiation condition at infinity (see [Tihonov & Samarsky,
1972)).
Similarly, E » and ﬁ ~ are the solutions of Egs. (20)-(21) such that:
1) the tangent components of the vectors E » and b » are continuous on the surfaces S, and
Sy,

2) vectors E » and ﬁ  satisfy the radiation condition at infinity.

F

(23)

are the solutions of Egs. (18)-(19) such that:

S Al

In order to prove formula (1) we use the Lorentz reciprocity theorem (see [Antimirov,
Kolyshkin & Vaillancourt, 1997]). By taking the scalar product of Eq. (19) with 5 » and of

Eq. (20) with ﬁ s » and by summing both products, one obtains
Eocurt M, -curlb, =3 B, - E 41 B, + jouutl, #,. (24)
From
div(E, xH V=M, -curlE, —E, - curl lT , , 25)
and Eq. (20), it follows
_aiv(Eox b )=

abs

B, B+l E +jouut, B, (26)

Interchanging subscripts abs and F in Eq. (26) (i.e. doing the similar operations with
Egs. (18) and (21)), we obtain

_div(gubs XﬁF) = EF% EF ’ Eabs + ;,e ’ Eabs + Jwﬂoﬂ ﬁF ’ ﬁabs . (27)
Subtracting Eq. (26) from Eq. (27) yields
div(EF Xﬁabs _gabs ><ﬁ[)F) = (;13 - l,;azbc)g

abs EF _;}e ’ (EF _Eabs) . (28)
I. Integration of Eq. (28) over the region V bounded by the closed surfaces S, and S
yields
div(EFXﬁabs_EabsxﬁF)dV: (;Ig_lfgazbc) Eabs'EFdV_ FE(EF_E )dV(29)
V

abs

vV

4
Since l;,jn —IFFZ =0 and ;}g =0 in the region V (see Egs. (13), (22), (23)), the right-hand
side of Eq. (29) is equal to zero in the region V . The left-hand side is transformed using the

Gauss’ divergence theorem and taking into account that the boundary of region V consists of
two closed surfaces S, and S (see Fig.1). As a result, we obtains
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o +O —|(£F><I—f}abx _E xhyReas =o, (30)

where £ is a unit vector of the external normal to the boundary of the region V. We assume
that as R — oo, the integrand in Eq. (28) tends to zero faster than R~ . Since the surface S, is
a sphere of radius R, we have

limo (E,xH, —E, xH,)-hds=0. 31)

R—e0
SR

Thus, it follows from Eq. (31) that
o k-Ras=o, (32)
S

where

ﬁszxﬁabs —Ea,mxﬁF. (33)

II. Integrating Eq. (28) over the region V bounded by three closed surfaces S, S, and

S, , using the Gauss® divergence theorem and taking into account that in the region /' the
right-hand side of Eq. (28) is equal to zero, we obtain

© +0 +o0 ) RFdas=o, (34)
s S Sy,
where £~ =—F" is a unit vector of the external normal to the boundary of the region 13 It
follows from Egs. (32) and (34) that
oR-Fds=—ck-Rdas=ck-Ras. (35)
Seoit Sy Sy

III. Integrating Eq. (28) over the region V.

. bounded by the closed surface S, then

coil >
using the Gauss’ divergence theorem and taking into account that in this region ;} “#0 and
[ is defined by Eq. (13), one gets

ok-Ras=-1  slp-p(@)8lz- =) h(p.p)E - E™av, (36)

N coil V('m‘[

Eak k. (37)

The right-hand side of Eq. (36) is transformed using the main property of delta function:
SLp - P32 — (@) h(p,9) . - E™ dxdydz =

where

Veoit

+oooo

= Slp-p(@)] h(p,p)E. - ol

—o0—00

dxdy , (38)
2=z(p)

where
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h(p.p) = %Jpz P @F 2@ .

Introducing the polar cylindrical coordinates x=pcose, y=psing, dxdy= pdpdep
into Eq. (38) yields

2r

F= dg 5[p—p((p)]h(p,fp)5-£"”"

o )P dp =
= B (p(0),20) W p(0).0)E. p@)do. (39)
However,
gfh(p((p),fp)p((p)d%gdl =dl , (40)

where d}} is a such vector that its module is equal to the differential of the length of the line
arc and it is directed along the tangent to this line. Thus, it follows from Eq. (39) that

F=okm.af =—zmp 41)
Leoir

where Z™ is the change in impedance due to a flaw situated in the region V, (see
[ Antimirov, Kolyshkin & Vaillancourt, 1997]). Consequently, Eq. (36) has the following form
oR-Rras =1z 42)

SL‘oiI

IV. Integrating Eq. (28) over the region V' bounded by two closed surfaces S, and S,

using the Gauss’ divergence theorem and taking into account that the right-hand side of Eq.
(28) 1s equal to zero in this region, we obtain

ok-Bras+ ok -Rras=o. 43)
S, Sy
It follows from Egs. (35), (42) and (43) that
1z =R Pras=—oR-Ras. (44)
S, S

V. Finally, integrating Eq. (28) over the region V., using the Gauss’ divergence theorem
and taking into account that I“=0 and k}-k’ =0, -0+ jwe,(é,~€) in this region, we
obtain

ok -Rds=[(c, —0)+ jwe,(¢,~8)] E, -E av. (45)
Sg Vi
The final formula follows from Egs. (44) and (45):

A —ILZ[(O'F —0)+ jowe,(€,~6)] Eabs ’EF av . (46)
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3 THE PROOF OF FORMULA (2) FOR THE CASE OF AN ARBITRARY

Let us consider two arbitrary functions u(M)=u(x,y,z), v(M)=v(x,y,z), which are
continuous together with their second derivatives, in the region V' bounded by some closed
surfaces §,,S,,...,S,, . Using the Green’s formula, one gets

v au\
Py s, 47
(u on an “4n

14

(uAv —vAu)dV = [©+ O+A +O )

S S,

where } is the external normal vector of the region ¥ . Formula (47) is also valid for two
vector functions #(M) and b(M).

MV C g
Let 4, (M) be the vector potential in the absence of the flaw, IZF (M) be the vector

potential in the presence of the flaw. The vectors ;Ilabs and ;IJF satisfy the following equations
(see [Antimirov, Kolyshkin & Vaillancourt, 1997]):

AA +kab€Aab€ = lLlOlu}) (48)
A4y + kF AF = _:uo:u}) > (49)
where kjh kﬁ and [° are defined by Egs. (22), (23) and (13), respectively. Vectors Eabs,

. M . .
b abs > 5 and » are expressed in terms of the vectors 4, and IZF by using the following
expressions (see [Antimirov, Kolyshkin & Vaillancourt, 1997]):

v p
Curl Aubs = l[lO/uﬁubs H gabs = _ja)Aabs + 1 12 graddlvAabs (50)
lLlO abs
p p ~
curl A, :,uo/tﬁF, EF =—jwA, + l;l—zgraddivAF. (51)
0 F

b . .=
The Green’s formula (47) for the vectors 4, and ){}F in the region V' bounded by the
closed surfaces S, and S (see Fig.1), has the form:

p p
(Aabs PF ubs )dV (O +O )(Eubs aﬁ - EF aAubé \dS (52)
7 5 s on on

By substituting AZH,,S ey —,uo,u;)e of Eq. (48) and AIEIJF = —l:ﬁ;IIF —,uo,u}}e of Eq.

abs*~abs

(49) into the left-hand side of Eq. (52), and taking into account that I“=o0 , l;;jm = IFFZ in the

region V', one can see that the left-hand side of Eq. (52) is equal to zero. In the limit R — o,
the integral over S, tends to zero. Consequently, it follows from Eq. (52) that

abs S =0 as R —>oo. 53
abs an an ( )

(p aA aA )
(@)
S

Formula (53) is completely equivalent to formula (32). Therefore, further proof of formula
(2) is completely equivalent to that of formula (1). Consequently,
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ind __ 9 . A A
zZ —I—Z[O'F—G-l-]a)é‘o(é‘F—E)] A, A dV . (54)

Vi

Formula (54) can be generalised for the case of m flaws present in regions
Vs Vier oKLV, bounded by surfaces S, S,,K ,S, , respectively. The regions V., V,,, K,V

have the conductivities o,,0,,...,0°

m

and the relative permittivities £,é,,...,€, , respectively.
Using the same proof as above, instead of formula (53) one obtains

ind C a)2 . A A p p
™ = z]—z[f’k —0+ jwE(E,—€)] Ay A dV, (55)
k=1 Ve

where A4, 1is the vector potential in region V,, with the conductivity o, and under the

condition that all other regions of the flaw, V..,V.,. K.V, ,V:..K,V,,, have the

m?>

conductivities equal to o,,0,,...,0,_,,0,,,,K ,0, , respectively.

4 CONCLUSIONS

A new formula for the change in impedance is obtained for the case of a closed emitter of
arbitrary form located above a conducting region with an arbitrary form flaw. The formula has
the form of a triple integral over the region of the flaw of scalar product of two vector
potentials: the vector potential in the flaw and the vector potential in the same region in the
absence of the flaw. It is strictly proved that the new simple formula is equivalent to the
previous formula used in literature. However, the previous authors used this new simple
formula in their applications without a correct basis. The new formula is generalized for the
case of m arbitrary flaws located in the conducting region. The displacement current is taken
into account.

REFERENCES

1. Antimirov M.Ya., Kolyshkin A.A., Vaillancourt R. 1994. Application of a perturbation
method to the solution of eddy current testing problems. IEEE Trans. on Magnetics 30,
no.3, pp.1247-1252.

2. Antimirov M.Ya., Kolyshkin A.A., Vaillancourt R. 1997. Mathematical Models for Eddy
Current Testing, Montreal: Les Publication CRM.

3. Antimirov M., Dzenite I. 2002. New formula for impedance change in the three-
dimensional case. Scientific Proceedings of Riga Technical University, 5" series:
Computer Science, 44" thematic issue: Boundary Field Problems and Computer
Simulation, vol.12, Riga Technical University, ISSN 1407-7493, Riga, pp. 48-53.

4. Auld B.A., Muennemann F. and Riaziat M. 1984. Quantitative modeling of flaw responses
in eddy current testing, Research Techniques in Nondestructive Evaluation, vol. VII,
Academic Press, New York, Paris, pp. 37-76.

5. Fastrickii V.S., Antimirov M.Ya. and Kolyshkin A.A. 1983. Application of the method of
perturbation for the computation of superposed transducers. Methods and Instruments for
Automatic Nondestructive Testing, Riga Polytechnical Institute, Riga, pp. 12-22 (Russian).

6. Fastrickii V.S., Antimirov M.Ya. and Kolyshkin A.A. 1984. Method of computation of a
field excited by a coil with current located above a half-space with a flaw. Methods and

10



SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY
Series - Computer Science Boundary Field Problems and Computer Simulation - 46" thematic issue
2004

Instruments for Automatic Nondestructive Testing, Riga Polytechnical Institute, Riga, pp.
5-11 (Russian).

7. Satveli R., Moulder J.C., Wang B. and Rose J.H. 1996. Impedance of a coil near an
imperfectly layered metal structure: The layer approximation, J. Applied Phys., Vol.79,
No. 6, pp. 2811-2821.

8. Tihonov A.N., Samarsky A.A. 1972. Equations of mathematical physics. Moscow: Science,
735 pages (Russian).

9. Zaman A.J.M., Gardner C.G. and Long S.A. 1982. Change in impedance of a single turn
coil due to a flaw in a conducting half-space, J. Nondestr. Eval., Vol.3, No.1, pp. 37- 43.

Maximilian Antimirov, prof. Dr. habil. phys.

Riga Technical University, Department of Engineering Mathematics
Address: 1 Meza str., Riga, LV-1048, Latvia

Phone: +371 7089551; E-mail: antimir@.svnets.lv

Ilona Dzenite, Ph.D. student

Riga Technical University, Department of Engineering Mathematics
Address: 1 Meza str., Riga, LV-1048, Latvia

Phone: +371 7089551; E-mail: ilnd2@yahoo.com

Antimirovs M., Dzenite 1. Par impedances izmainu aprékinasanas formulam.

legiita jauna analitiska formula impedances izmainu aprékindasanai, kuru izmanto nesagraujosas kontroles
problémas. Pieradijumam izmantota Grina formula, atskiriba no iepriekséjiem darbiem, kuros, lai iegiitu
pazistamu literatiura formulu, izmanto Lorvenca teorému. Jaund formula impedances izmainu aprékinasanai
ieguta triskarsa integrala forma pa apgabalu, kas satur defektu, no divu vektoru potencialu skalara reizinajuma:
vektora potencialu defekta un vektora potencialu taja pasa apgabala, gadijuma, kad defekta nav. Lidzigai
Sformulai, kas iegiita ieprieks, ir elektriska lauka vektoru skalard reizindjuma triskarsa integrala forma. Stingri
pieradits, ka jauna vienkarsaka formula ir ekvivalenta formulai, kas izmantota literatiira.

Antimirov M. Ya., Dzenite I. A. On formulae for the change in impedance.

A new exact analytical formula for the impedance change used in non-destructive testing problems is derived.
The derivation is based on the Green’s formula in contrast with the previous studies that used Lorentz theorem
for obtaining the formula known in literature. The new formula for the impedance change has the form of a
triple integral of scalar product of two vector potentials: the vector potential in the flaw and the vector potential
in the same region in the absence of the flaw over the region containing the flaw. The similar formula obtained
earlier by previous authors has the form of a triple integral of scalar product of amplitude electric field vectors.
1t is strictly proved that the new simple formula is equivalent to the previous formula used in literature.

AnTumupoB M., [I3enurte U. O popmynax s BbIYMCIeHUA U3MEHEHNH B NIMIIeJaHCe.

THonyuena nosas anarumuyeckas popmyna 01 8blMUCIEHUA USMEHEHUL 8 UMnedance, UCNOIb3YeMOM 8 3a0a4ax
Hepaspywaoue2o KoHmposa. J{okazamenbcmeo 0CHO8aHO Ha gopmyne I puna, 8 omauudue om npeoblOyUUx
pabom, 8 KOMOPbIX Oisl NOAYYeHUs (OpMYyabl U38ecCmHOU 8 aumepamype, ucnoav3yemcsa meopema Jlopenya.
Hoeas ¢popmyna ons eviuucnenuss usmenenutl 6 umneodance umeem Qopmy mpouHo2o unmezpana no obracmu,
codepacawyeli Oeghexm, Om CKAAPHO20 NPOU3BEOCHUs. 08X BEKIMOPHBIX NOMEHYUAL08. 6EKMOPHO20 NOMEHYUALA
8 deghexme u 6eKMOPHO2O NOMEHYUANA 8 MOU dce 00aaACmuU, HO NPU YCI08UU, YMO O0eeKm Omcymcmeyem.
Cxoonas gopmyna, noryuennas pamee npeoblOYWUMU AGMOPAMU, UMeem QOpMy MPOUHO20 UHMEZPad Om
CKaIApHOcO np0u36eaeHuﬂ BEKMOPOB INEKMPUHUECKO2O NOJA. Cmp020 ()OKLB’(IHO, Ymo Hoea: 60.7166 npocmasi
Gopmyna sxeusanrenmua npedvioyweli hopmyne, UCHOIL3YEMOU 8 Tumepamype.
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