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ON FORMULAE FOR THE CHANGE IN IMPEDANCE
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1   INTRODUCTION

Formula for the change in impedance used in literature (see [Zaman, Gardner & Long,
1982], [Satveli, Moulder, Wang & Rose, 1996]) has the form
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where FV  is the region of the flaw, Fσ  and σ  are the conductivities of the flawed and
flawless regions, respectively, FE

ρ
 is the amplitude electric field vector in the flawed region,

E
ρ

 is the amplitude electric field vector in the same region in the absence of the flaw, I  is the
amplitude current vector density.

The displacement current is neglected in Eq. (1) as it is used in the problems of eddy
current testing and in the case of harmonic oscillations of the external current with frequency
ω  (see [Antimirov, Kolyshkin & Vaillancourt, 1997]). In the present paper a new formula for

indZ  is obtained in more convenient for computations form:
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where FA
ρ

 is the amplitude vector potential in the flawed region, A
ρ

 is the amplitude vector
potential in the same region in the absence of the flaw (i.e. the case when all physical
properties of region FV  are the same as the physical properties of the conducting region
outside of region FV ), ω  is the frequency.

The aim of this paper is to prove that the right-hand sides of Eqs. (1) and (2) coincide, i.e.
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Note that the relationship between vectors E
ρ

 and A
ρ

 in the case of harmonic oscillations
of the external current with frequency ω  is given by (see [Antimirov, Kolyshkin &
Vaillancourt, 1997]):
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where )ˆ(~
00

2
1 ωεεσµµ jk +=  if the displacement current is taken into account and

σµµ0
2

1
~ =k  if the displacement current is neglected, 0ε  and 0µ  are the electric and magnetic
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constants, respectively; ε̂  and µ  are the relative permittivity and relative magnetic
permeability of the medium, respectively; 1−=j  is the imaginary unit.

It follows from Eq. (4) that Eq. (3) is correct if

0=Adiv
ρ

,  0=FAdiv
ρ

.                                                             (5)

In fact Eq. (5) is only valid in the case of a homogeneous half-space as the conducting
region and the external current located either on a single-turn coil or double conductor line in
the plane parallel to the half-space. Eq. (5) is also valid if the flaw of the non-homogeneous
half-space is a cylindrical body coaxial with a single-turn coil carrying the external current
(see [Fastrickii, Antimirov & Kolyshkin, 1983], [Fastrickii, Antimirov & Kolyshkin, 1984])
or if the flaw is an infinitely long cylinder parallel to the double conductor line carrying the
external current (see [Antimirov, Kolyshkin & Vaillancourt, 1994]). In all other cases,

0≠Adiv
ρ

, 0≠FAdiv
ρ

 in region FV . However, Eqs. (1), (2) and (3) are still true as it will be
shown below.

It follows from Eqs. (3) and (4) that for a flaw situated in the arbitrary region FV
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where )ˆ(~
00

2
1 ωεεσµµ FFF jk += . At first sight, assuming the continuity of the functions A

ρ
,

FA
ρ

, Adivgrad
ρ

, FAdivgrad
ρ

, one may conclude that 0=Adivgrad
ρ

, 0=FAdivgrad
ρ

 (using
the known theorem: if a function )(Mf  is continuous in a closed region FV  and for any
region FVV ⊂~  the formula 0)( =

V
dVMf  is valid, then 0)( =Mf  for all FVM ∈ ).

However, it is not true. In fact, by changing the region FV , the functions A
ρ

 and FA
ρ

 are
changed too. Therefore, Eq. (6) is also valid if 0≠Adiv

ρ
, 0≠FAdiv

ρ
 in the region FV .  In the

previous studies (see [Zaman, Gardner & Long, 1982], [Satveli, Moulder, Wang & Rose,
1996]) trying to prove formula (1) for impedance change, it was assumed that 0=Adiv

ρ
 in

Eq. (4). Besides, in [Zaman, Gardner & Long, 1982] was assumed that the scalar potential
gives change in the static field only. That statement is not true. In [Satveli, Moulder, Wang &
Rose, 1996] was suggested to use the Coulomb’s gauge, i.e. 0=Adiv

ρ
. At the same time, the

authors use the following equation for the vector potential A
ρ

:

extIAkA
ρρρ
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2 =+∆ , µωσµ 0

2 jk −= .                                                             (7)

It is well known that Eq. (7) is not correct in this case. In fact, in the case of Coulomb
gauge the equation for the vector potential is more complicated (see [Antimirov, Kolyshkin &
Vaillancourt, 1997], p.10), and has the form
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where ϕ  is the scalar potential. Moreover, even the authors of the present paper in their
previous paper [Antimirov & Dzenite, 2002] mistakenly stated that Eq. (1) is not correct,
using the fact that 0≠Adiv

ρ
, 0≠FAdiv

ρ
 in the region FV .
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Note also that by taking into account the displacement current in this problem, the

coefficient 2I
F σσ −  in Eqs. (1) and (2) is transformed into the coefficient

2
0

2

)ˆˆ(
I

j
I

FF εεεωσσ −+− ,                                                                  (9)

where Fε̂  and ε̂  are the relative electric permittivity in the flawed and flawless regions,
respectively.

2   THE PROOF OF FORMULA (1)

The proof is performed taking into account the displacement current. In the literature (see
[Zaman, Gardner & Long, 1982], [Auld, Muennemann & Riaziat, 1984]) formula (1) is
usually obtained without describing the source of external current. This fact makes difficulties
for estimating the degree of mathematical basis of the formula. In the present paper, the
emitter is located on a closed line described in the parametrical form in polar cylindrical
coordinates ),,( zϕρ  by the equation:

�
�

=
=

),(
),(

ϕ
ϕρρ

zz
  πϕ 20 ≤≤ ,                                                                                (10)

where )(),( ϕϕρ z  are prescribed functions, ϕ  is the parameter. Equation describing any
closed line can be written by using formula (10) and choosing the appropriate system of the
rectangular coordinates ),,( zyx .

Consider a sphere RS  of radius R  with an interior arbitrary form closed surface S  (see
Fig.1).
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Fig.1. The disposition of the regions and closed surfaces.
The surface S  covers the region containing a single-turn coil and a conducting medium.

A closed surface coilS  bounds a region coilV  containing only a single-turn coil. A closed
surface VS  bounds the region V  containing the conducting medium with the conductivity

const=σ  and the relative permittivity const=ε̂  and a region FV  with the conductivity
constF =σ  and the relative permittivity constF =ε̂ . The region FV  is bounded by a closed

surface FS . Finally, V~  is a region bounded by surfaces S  and RS , and V
~~  is a region

bounded by surfaces S , coilS  and VS .
In the case of harmonic oscillations of the external current with the frequency ω  in the

closed coil, Maxwell’s equations for the complex-valued amplitude electric field vector E
ρ

and the complex-valued amplitude magnetic field vector H
ρ

 have the following form (see
[Antimirov, Kolyshkin & Vaillancourt, 1997]):

HjEcurl
ρρ

µωµ0−= , (11)
eIEjHcurl

ρρρ
++= )ˆ( 0 ωεεσ , (12)

where eI
ρ

 is the complex-valued amplitude external current vector density.
According to equation (10), one can write

τϕδϕρρδϕρ ezzhII e ρρ
)]([)]([),( −−= ,    (13)
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where )(xδ  is the Dirac delta function, τeρ  is a unit vector of the tangent to the line (10), I  is
the complex-valued amplitude current vector density. The coefficient ),( ϕρh  in (13) has the
form:

222 )]([)]([1),( ϕϕρρ
ρ

ϕρ zh ′+′+= . (14)

This coefficient is chosen so that the triple integral of eI
ρ

 over the all space is equal to the

following constant:
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where coilσ  is the conductivity of the coil, coilL  is the length of the closed contour (10) with
the current density constI = , coilcoil LΕ  is the electromotive force that is necessary for
supporting the current of the density constI =  in the closed contour (10). It follows from Eq.
(10) that the contour’s length, coilL , is equal to

ϕϕϕρϕρ
π

dzLcoil
222

2
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In order to prove Eq. (15), we substitute eI
ρ

 given by Eq. (13) into the integral of

Eq. (15). By using the main property of the delta function and using Eq. (16), we obtain
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Thus, formula (15) is proved.
Explore the system of Eqs. (11)-(12) for two following cases: for the case when the flaw is

absent, i.e. σσ =F  in the region FV  (by substituting absEE
ρρ

= , absHH
ρρ

= ), and in the

presence of the flaw (by substituting FEE
ρρ

= , FHH
ρρ

= ). Then assuming that the external
current vector density eI

ρ
 is the same in both cases and it is defined by Eq. (13), one obtains
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e
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In the above, absE
ρ

 and absH
ρ

 are the solutions of Eqs. (18)-(19) such that:

1) the tangent components of the vectors absE
ρ

 and absH
ρ

 are continuous on the surface VS  (see
[Antimirov, Kolyshkin & Vaillancourt, 1997]);

2) vectors absE
ρ

 and absH
ρ

 satisfy the radiation condition at infinity (see [Tihonov & Samarsky,
1972]).

Similarly, FE
ρ

 and FH
ρ

 are the solutions of Eqs. (20)-(21) such that:
1) the tangent components of the vectors FE

ρ
 and FH

ρ
 are continuous on the surfaces FS  and

VS ;

2) vectors FE
ρ

 and FH
ρ

 satisfy the radiation condition at infinity.

In order to prove formula (1) we use the Lorentz reciprocity theorem (see [Antimirov,
Kolyshkin & Vaillancourt, 1997]). By taking the scalar product of Eq. (19) with FE

ρ
 and of

Eq. (20) with absH
ρ

, and by summing both products, one obtains

=⋅−⋅ FabsabsF EcurlHHcurlE
ρρρρ

FabsF
e

Fabsabs HHjEIEEk
ρρρρρρ

⋅+⋅+⋅ µωµ0
2~ . (24)

From

absFFabsabsF HcurlEEcurlHHEdiv
ρρρρρρ

⋅−⋅=× )( ,      (25)

and Eq. (20), it follows

=×− )( absF HEdiv
ρρ

FabsF
e

Fabsabs HHjEIEEk
ρρρρρρ

⋅+⋅+⋅ µωµ0
2~ . (26)

Interchanging subscripts abs  and F  in Eq. (26) (i.e. doing the similar operations with
Eqs. (18) and (21)), we obtain

=×− )( Fabs HEdiv
ρρ

absFabs
e

absFF HHjEIEEk
ρρρρρρ

⋅+⋅+⋅ µωµ0
2~ . (27)

Subtracting Eq. (26) from Eq. (27) yields

=×−× )( FabsabsF HEHEdiv
ρρρρ

)()~~( 22
absF

e
FabsabsF EEIEEkk

ρρρρρ
−⋅−⋅− .  (28)

I. Integration of Eq. (28) over the region V~  bounded by the closed surfaces RS  and S
yields

=×−× dVHEHEdiv FabsabsF
V

)(
~

ρρρρ
−⋅− dVEEkk Fabs

V
absF

ρρ
~

22 )~~( dVEEI absF
e

V

)(
~

ρρρ
−⋅ . (29)

Since 0~~ 22 =− Fabs kk  and 0=eI
ρ

 in the region V~  (see Eqs. (13), (22), (23)), the right-hand

side of Eq. (29) is equal to zero in the region V~ . The left-hand side is transformed using the
Gauss’ divergence theorem and taking into account that the boundary of region V~  consists of
two closed surfaces RS  and S  (see Fig.1). As a result, we obtains
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,  (30)

where +nρ  is a unit vector of the external normal to the boundary of the region V~ . We assume
that as ∞→R , the integrand in Eq. (28) tends to zero faster than 2−R . Since the surface RS  is
a sphere of radius R , we have

0)(lim =⋅×−× +

∞→
dSnHEHE FabsabsF

S
R

R

ρρρρρ
. (31)

Thus, it follows from Eq. (31) that

0=⋅ +dSnR
S

ρρ
, (32)

where

FabsabsF HEHER
ρρρρρ

×−×= .  (33)

II. Integrating Eq. (28) over the region V
~~  bounded by three closed surfaces S , coilS  and

VS , using the Gauss’ divergence theorem and taking into account that in the region V
~~  the

right-hand side of Eq. (28) is equal to zero, we obtain

0)( =⋅++ −dSnR
Vcoil SSS

ρρ
,  (34)

where +− −= nn ρρ  is a unit vector of the external normal to the boundary of the region V
~~ . It

follows from Eqs. (32) and (34) that

dSnRdSnRdSnR
VVcoil SSS

+−− ⋅=⋅−=⋅ ρρρρρ .  (35)

III. Integrating Eq. (28) over the region coilV  bounded by the closed surface coilS , then

using the Gauss’ divergence theorem and taking into account that in this region 0≠eI
ρ

 and
eI

ρ
 is defined by Eq. (13), one gets

)]([)]([ ϕδϕρρδ zzIdSnR
coilcoil VS

−−−=⋅ +ρρ
dVEeh ind

ρρ ⋅τϕρ ),( , (36)

where

absF
ind EEE

ρρρ
−= .    (37)

The right-hand side of Eq. (36) is transformed using the main property of delta function:

=⋅−− dxdydzEehzz ind

Vcoil

ρρ
τϕρϕδϕρρδ ),()]([)]([

dxdyEeh
zz

ind
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),()]([

ϕτϕρϕρρδ
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+∞

∞−

+∞
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ρρ ,  (38)

where
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Introducing the polar cylindrical coordinates ϕρ cos=x , ϕρ sin=y , ϕρρ dddxdy =
into Eq. (38) yields

=⋅−≡
∞
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0
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),()]([ ρρϕρϕρρδϕ
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dEehdF
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     =
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τ ϕϕρϕϕρϕϕρ
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However,

lddledhe
ρρρ == ττ ϕϕρϕϕρ )()),(( ,  (40)

where ld
ρ

is a such vector that its module is equal to the differential of the length of the line
arc and it is directed along the tangent to this line. Thus, it follows from Eq. (39) that

−=⋅=
coilL

indind IZldEF
ρρ

,         (41)

where indZ  is the change in impedance due to a flaw situated in the region FV  (see
[Antimirov, Kolyshkin & Vaillancourt, 1997]). Consequently, Eq. (36) has the following form

ind

S

ZIdSnR
coil

2=⋅ +ρρ
.   (42)

IV. Integrating Eq. (28) over the region V  bounded by two closed surfaces VS  and FS ,
using the Gauss’ divergence theorem and taking into account that the right-hand side of Eq.
(28) is equal to zero in this region, we obtain

+⋅ +dSnR
VS

ρρ
0=⋅ +dSnR

FS

ρρ
.  (43)

It follows from Eqs. (35), (42) and (43) that

=⋅=− +dSnRZI
VS

ind ρρ
2 dSnR

FS

+⋅− ρρ
.  (44)

V. Finally, integrating Eq. (28) over the region FV , using the Gauss’ divergence theorem
and taking into account that 0=eI

ρ
 and )ˆˆ(~~

0
22 εεωεσσ −+−=− FFabsF jkk  in this region, we

obtain

=⋅− +dSnR
FS

ρρ
⋅−+−

FV
FabsFF dVEEj

ρρ
)]ˆˆ()[( 0 εεωεσσ . (45)

The final formula follows from Eqs. (44) and (45):

)]ˆˆ()[(1
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3   THE PROOF OF FORMULA (2) FOR THE CASE OF AN ARBITRARY

Let us consider two arbitrary functions ),,()( zyxuMu = , ),,()( zyxvMv = , which are
continuous together with their second derivatives, in the region V  bounded by some closed
surfaces 1S , 2S ,…, mS . Using the Green’s formula, one gets

=∆−∆
V

dVuvvu )( dS
n
uv

n
vu

S SS m

�
�
�

�

∂
∂−

∂
∂

�
�
�

�
�

�

�
+++

1 2

Λ ,  (47)

where nρ is the external normal vector of the region V . Formula (47) is also valid for two
vector functions )(Muρ  and )(Mvρ .

Let )(MAabs

ρ
 be the vector potential in the absence of the flaw, )(MAF

ρ
 be the vector

potential in the presence of the flaw. The vectors absA
ρ

 and FA
ρ

 satisfy the following equations
(see [Antimirov, Kolyshkin & Vaillancourt, 1997]):

e
absabsabs IAkA

ρρρ
µµ0

2~ −=+∆ , (48)
e

FFF IAkA
ρρρ

µµ0
2~ −=+∆ ,  (49)

where 2~
absk , 2~

Fk  and eI
ρ

 are defined by Eqs. (22), (23) and (13), respectively. Vectors absE
ρ

,

absH
ρ

, FE
ρ

 and FH
ρ

 are expressed in terms of the vectors absA
ρ

 and FA
ρ

 by using the following
expressions (see [Antimirov, Kolyshkin & Vaillancourt, 1997]):

absabs HAcurl
ρρ

µµ0= ,      abs
abs

absabs Adivgrad
k

AjE ~
~
11
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0µµ
ω +−=

ρρ
, (50)

FF HAcurl
ρρ

µµ0= ,         F
F

FF Adivgrad
k

AjE ~
~
11

2
0µµ

ω +−=
ρρ

.                        (51)

The Green’s formula (47) for the vectors absA
ρ

 and FA
ρ

 in the region V~  bounded by the
closed surfaces RS  and S  (see Fig.1), has the form:

=∆−∆
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absFFabs dVAAAA
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SSR
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By substituting e
absabsabs IAkA

ρρρ
µµ0

2~ −−=∆  of Eq. (48) and e
FFF IAkA

ρρρ
µµ0

2~ −−=∆  of Eq.

(49) into the left-hand side of Eq. (52), and taking into account that 0=eI
ρ

, 22 ~~
Fabs kk =  in the

region V~ , one can see that the left-hand side of Eq. (52) is equal to zero. In the limit ∞→R ,
the integral over RS  tends to zero. Consequently, it follows from Eq. (52) that

0=
�

�
�
�

�

∂
∂−

∂
∂ dS

n
AA

n
AA abs

F
F

abs
S

ρρρρ
 as ∞→R .                                              (53)

Formula (53) is completely equivalent to formula (32). Therefore, further proof of formula
(2) is completely equivalent to that of formula (1). Consequently,
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dVAAj
I

Z
FV

FabsFF
ind ⋅−+−=

ρρ
)]ˆˆ([ 02

2

εεωεσσω . (54)

Formula (54) can be generalised for the case of m  flaws present in regions
FmFF VVV ,,, 21 Κ  bounded by surfaces mSSS ,,, 21 Κ , respectively. The regions FmFF VVV ,,, 21 Κ

have the conductivities mσσσ ,...,, 21  and the relative permittivities mεεε ˆ,...,ˆ,ˆ 21 , respectively.
Using the same proof as above, instead of formula (53) one obtains

,)]ˆˆ([ 0
1

2

2

dVAAj
I

Z
FkV

Fkabskk

m

k

ind
� ⋅−+−=

=

ρρ
εεωεσσω   (55)

where FkA
ρ

 is the vector potential in region FkV  with the conductivity kσ  and under the
condition that all other regions of the flaw, FmFkFkFF VVVVV ,,,,,, 1121 ΚΚ +− , have the
conductivities equal to mkk σσσσσ ,,,,...,, 1121 Κ+− , respectively.

4 CONCLUSIONS

A new formula for the change in impedance is obtained for the case of a closed emitter of
arbitrary form located above a conducting region with an arbitrary form flaw. The formula has
the form of a triple integral over the region of the flaw of scalar product of two vector
potentials: the vector potential in the flaw and the vector potential in the same region in the
absence of the flaw. It is strictly proved that the new simple formula is equivalent to the
previous formula used in literature. However, the previous authors used this new simple
formula in their applications without a correct basis. The new formula is generalized for the
case of m arbitrary flaws located in the conducting region. The displacement current is taken
into account.
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Antimirovs M., Dzenīte I. Par impedances izmaiņu aprēķināšanas formulām.
Iegūta jauna analītiska formula impedances izmaiņu aprēķināšanai, kuru izmanto nesagraujošās kontroles
problēmās. Pierādījumam izmantota Grīna formula, atšķirībā no iepriekšējiem darbiem, kuros, lai iegūtu
pazīstamu literatūrā formulu, izmanto Lorenca teorēmu. Jaunā formula impedances izmaiņu aprēķināšanai
iegūta trīskāršā integrāļa formā pa apgabalu, kas satur defektu, no divu vektoru potenciālu skalārā reizinājuma:
vektora potenciālu defektā un vektora potenciālu tajā pašā apgabalā, gadījumā, kad defekta nav. Līdzīgai
formulai, kas iegūta iepriekš, ir elektriskā lauka vektoru skalārā reizinājuma trīskāršā integrāļa forma. Stingri
pierādīts, ka jaunā vienkāršākā formula ir ekvivalenta formulai, kas izmantota literatūrā.

Antimirov M. Ya., Dzenite I. A. On formulae for the change in impedance.
A new exact analytical formula for the impedance change used in non-destructive testing problems is derived.
The derivation is based on the Green’s formula in contrast with the previous studies that used Lorentz theorem
for obtaining the formula known in literature. The new formula for the impedance change has the form of a
triple integral of scalar product of two vector potentials: the vector potential in the flaw and the vector potential
in the same region in the absence of the flaw over the region containing the flaw. The similar formula obtained
earlier by previous authors has the form of a triple integral of scalar product of amplitude electric field vectors.
It is strictly proved that the new simple formula is equivalent to the previous formula used in literature. 

Антимиров М., Дзените И. О формулах для вычисления изменений в импедансе.
Получена новая аналитическая формула для вычисления изменений в импедансе, используемом в задачах
неразрушающего контроля. Доказательство основано на формуле Грина, в отличие от предыдущих
работ, в которых для получения формулы известной в литературе, используется теорема Лоренца.
Новая формула для вычисления изменений в импедансе имеет форму тройного интеграла по области,
содержащей дефект, от скалярного произведения двух векторных потенциалов: векторного потенциала
в дефекте и векторного потенциала в той же области, но при условии, что дефект отсутствует.
Сходная формула, полученная ранее предыдущими авторами, имеет форму тройного интеграла от
скалярного произведения векторов электрического поля. Строго доказано, что новая более простая
формула эквивалентна предыдущей формуле, используемой в литературе.


