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1    INTRODUCTION

The vector ϕ of the piezometric head is the numerical solution of a boundary field
problem which is approximated in nodes of a grid of a hydrogeological model (HM) by the
following algebraic expression:

A ϕ = b, A = Axy + Az – G,   b = βψ - G ψ   (1)

where the matrices Axy, Az, G represent, correspondingly, current transmittivity axy of aquifers
(these links are arranged in xy-planes), the vertical ties az originated by aquitards (if the semi-
3D scheme is used) , the elements gxy , gz connecting nodes of the grid with the piezometric
boundary conditions ψ; the vector β accounts for boundary flows. They also include the
vector βw of groundwater discharge/recharge from wells.

The ϕ and ψ-distribution of (1) must reproduce values of the head measured at
monitoring wells. The matrix A must incorporate observed permeability and geometrical
features of geological strata.

As a rule, locations of production and monitoring wells do not coincide with nodes of the
HM grid. These locations may be represented as non-regular points that should be attached to
the grid by interpolation. The roughest interpolation method moves these points to the one
nearest node. This method not only worsens the accuracy of ϕ (due to shifting positions of
production wells), but also deteriorates the role of monitored head values as calibration
targets. These effects may be considerable for regional HM where the plane approximation
step h is large (500 m – 4000 m).

This paper is devoted to interpolation for non-regular points of HM grid. The reported
results represent recent development of methods described in (Lace et al., 1995). Interpolation
for non – regular points is conditionally named as the forth and back one if it is used for
forming HM and for transferring obtained results to these points, respectively.

2    FORTH INTERPOLATION FOR PRODUCTION WELLS

Forth interpolation for production wells is considered by using the scheme of Fig.1 for an
elementary h×h block of a uniform grid. Within the block, a single flow source 0 is sited. Its
flow β0 should be interpolated among neighboring nodes n = 5,6,7,8, as follows:

 8   8
β0 = ∑β0

n,    β0
n = c0n β0 ,    ∑c0n = 1  (2)

n=5 n=5
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where the position of the source within the block depends on the local coordinates
h0i, i = 1,2,3,4 (i - projections of 0 on edges), c0n – the interpolation coefficients transferring
β0 to the nodes n = 5, 6, 7, 8.

Fig. 1. An elementary hxh block with a flow source or a monitoring point

The following structure of c0n results from two interpolation stages (0 → i; i → n) which
performs elimination of β0 :

c05 = c01 c15 + c02 c25 ,       c06 = c02 c26 + c03 c36 ,
c07 = c03 c37 + c04 c47 ,       c08 = c04 c48 + c01 c18 .  (3)

The intermediate coefficients c0i and cin represent the stages (0 → i; i → n), respectively.
The projection coefficients c0i are computed, by applying the inverse distance method (IDM),
as follows:

   4
c0i = a0i / a00 ,    a00 = ∑a0i ,                   a0i = σi h / (h0i + ε h)v,     i = 1,2,3,4.  (4)

   i=1

For the original version of (4), v=1.0 was used. Due to reasons explained later, v=1.4
provides better results. The current transmittivity σi at the point i depends both on its position
on the edge and on the transmittivities σn at nodes ending the edge:

σ1 = ((h02 + ε h) / h σ8 +(h04 + ε h) / h σ5)-1 ,
σ2 = ((h03 + ε h) / h σ5 +(h01 + ε h) / h σ6)-1 ,
σ3 = ((h04 + ε h) / h σ6 +(h02 + ε h) / h σ7)-1 ,  (5)
σ4 = ((h01 + ε h) / h σ7 +(h03 + ε h) / h σ8)-1 .

In (4) and (5), the constant ε ~ 10-5 averts the division by zero if h0i = 0. Similar measures
are needed for all interpolation formulas to be considered further. To simplify description of
the formulas, their necessary ε-protection is not displayed. If h0i → 0.5 h, σi → axy of Axy. The
first version of (4) applied σi = axy (Lace et al., 1995).

The coefficient cin depends only on the position of the point i on the edge:

c15 = c36 = h04 / h ,   c18 = c37 = h02 / h ,  c25 = c48 = h03 / h ,   c26 = c47 = h01 / h .  (6)

By introducing normalized distances ρ0i=h0i/h and the local normalized coordinates ξ and
η , with the node n=7 as the origin:

ξ = h04 / h = ρ04,   1-ξ = h02 / h = ρ02,     η = h03 / h = ρ03,   1-η = h01 / h  = ρ01  (7)
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and accountimg for (6), the expression (3) takes the form:

c05 = c01 ξ+ c02 η,                        c06 = c03 ξ+ c02 (1-η),
c07 = c03 (1-ξ) + c04 (1-η),           c08 = c01 (1-ξ) + c04 η .   (8)

If in (4) v=1.0 and σ = const, the system (8) becomes much simpler:

c05 = ξ η ,    c06 = ξ (1-η) , c07 = (1-ξ) (1-η) ,    c08 = (1-ξ) η .  (9)

The system of (9) represents the set of rectangular hyperbolas projected on the normalized
block 1×1. As an example, contours of c07 = const of (9) are shown in Fig.2.a). These
contours have the following features:

- forth interpolation of β0 is linear on any line parallel to the edges of the block;
- c07 = 0  if  ξ = η = 1 (edges 8 - 5 and 5 - 6);  therefore, the influence region for the

node n = 7 represents the 2 × 2 area containing four elementary blocks surrounding the
node;

- if ξ or η = 0 (edges 6-7 and 7-8) then β0 gets distributed between two nodes ending the
edges;

However, the contours of Fig. 2a) are not circular with respect to the node n = 7, at its
vicinity This drawback can be corrected if v = 1.4 is used for c0i of (4). The improved
contours are shown in Fig. 2b):

- their shape is still close to rectangular hyperbolas if k07 < 0.35;
- interpolation is linear on edges of the elementary block.

Not any forth interpolation method possesses useful features of (8). For example, the classic
IDM gives:

8
c07 = ρ07

-1 / ∑ ρ0n
-1 (10)

n=5

where ρ0n are normalized distances r0n / h In Fig.2c), the contours c07 given by (10) are shown.
Their drawbacks are obvious:

- interpolation is nonlinear in any direction;
- no borderline c07 = 0 exists; c07 = 0 only at nodes n = 5,6,8; due to this fact, it is not

possible to set justly the limits for the area of influence of the node n = 7;
- if the source β0 is located on an edge of the elementary block then not only the

endpoints of the edge, but at least four neighboring nodes should be accounted for.
For a node n, the summary flow βn resulting from forth interpolation of irregular βj, which

are located within the 2h × 2n area of influence, is given by the formula:
  J

βn = ∑ βj
n, (11)

j=1

where βj
n are the partial flows of βj given by (2); J is the number of sources accounted for.

Forth interpolation of βw improves accuracy of HM. Unfortunately, this advantage can be
exploited only then if back interpolation is available for irregularly located production and
monitoring wells. Formally, this difficulty does not exist for these modeling systems which
roughly move these wells into the nearest node.
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a) The set of rectangular hyperbolas obtained by (9)

b) Improved contours obtained by (8) if v =1.4

c) Contours obtained by the inverse distance method (10)

Fig. 2. Contours of c07 on the normalized grid block 1×1; σ==const
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3    RESORATION OF HEADS FOR PRODUCTION WELLS

In comparison with forth interpolation of βw, back interpolation for non-regular points is
more complex. Recently, its original version (Lace et al., 1995) has been considerably
improved and some new results are to be explained here.

Firstly, the value of φ0 for the source of β0 interpolated into the neighboring nodes must
be restored. The following assumption is used:

 8
φ0 = ∑ φn c0n + τ0 β0 = φ0

n + s0 , (12)
n=5

where φn are the computed heads at four nodes of Fig.1; c0n are the improved coefficients
(v = 1.4) of (8); τ0 is the local hydraulic resistance for the source; φ0

n , s0 are the head and
local depression, caused by the grid solution and the source, respectively. The value of τ0
should be predicted for any location of β0 within the elementary block. To simplify this task,
it is assumed that σn = 1, temporarily.

For any node of the grid, τ0 =0 . The maximum of τ0 is expected at the centre of the block
where c05 = c06 = c07 = c08 = 0.25. The other characteristic locus is the middle of an edge
where β0 is distributed in equal parts between the two nodes ending the edge. These two
special values of τ0 were obtained experimentally, as described below.

The elementary block was conditionally placed at the central part of a homogenous grid
(σ = 1.0) containing 100 × 100 nodes; on the borderline of the grid, the condition ψ = 0 was
specified. A single movable unity source of β0 = 1.0 was applied as the flow condition to be
positioned and interpolated within the elementary block. Then the grid solution of (1) can be
interpreted as the resistances τint at nodes with respect to the nullified borderline. The maximal
possible value τm = 0.8874 was obtained when the source was located exactly at the node.
This value was practically constant for all nodes of the grid, but the ones located nearby the
borderline. If the source was sited at the centre of the elementary block then the minimal
value τint = 0.6842 appeared at four nodes where the interpolated partial flows β0

n = 0.25 were
applied. The intermediate value τint = 0.7634 was obtained for two nodes if the source was in
the middle of an edge. The local resistance τ0 to be found is τ0 = τm - τint. Results of the
experiment are summarized in Table 1.

Table 1. Computed resistances for various positions of the unity source
Nr Position of source Resistance at node τint Local resistance

τ0

Equivalent radius rs
of source

1 node 0.8874 0 0.1972 h
2 edge 0.7634 0.1240 0.4299 h
3 centre 0.6842 0.2032 0.7071 h

The following analytic formula which gives the resistance τ between two coaxial cylinders (R
and r are, correspondingly, radii of the outer and inner cylinders):

τ = (ln(R/r)) / 2πσ (13)

is applied for computing the equivalent radius rs of the interpolated source. If τ = τint , σ = 1
then rs = R / exp(2π τint) ,where R = 52.059 h approximated the borderline of the grid area
containing 100 × 100 nodes.
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The values of τ0 from Table 1 are exactly repeated by (13) if R = rs,  r = 0.1972 h. There
the ratio R/r does not include h. Therefore, τ0 depends only on the position of the source
within the block h × h.

It follows from Table 1 that any source located exactly in a node has the equivalent radius
rs = 0.1972 h. It may be assumed that a non – regularily located source also has rs = 0.1972 h.
As a rule, rs > rw where rw is the real radius of the well. Due to this reason, the summary
resistance τ0w of the source is, as follows:

τ0w = τ0 + τw  ,   τw  = (ln(0.1972/ ρw)) / 2πσ0 ,         ρw = rw  / h ,       ρw ≤ 0.1972, (14)
   4                         4

σ0 = (∑σi ρ0i
-1 ) / ∑ ρ0i

-1

  i=1                      i=1

where τw is obtained by (13) if R = 0.1972; r = ρw; the current transmissitivity σ0 is IDM
interpolation on σi of (5).

The surface τ0 is the main element enabling to restore heads at production wells by using
(12). The initial version of the empiric formula for computing of τ0, within the normalized
block, was as follows:

  4
τ0 = (∑a0i / (0.3444 + 0.4960 a0i / ai))-1

 ,     a0i = σi ρ0i
-1  (15)

i=1

where ai were given by the expressions:

a1 = σ1 / ξ (1 - ξ) ,      a2 = σ2 / η (1 - η) ,
a3 = σ3 / ξ (1 - ξ) ,      a4 = σ4 / η (1 - η). (16)

The formula (15) confirms the experimental values from Table 1 ( σ = 1.0). In Fig.3a), the
contours of τ0 given by (15) are shown. Contours of (15) have two disadvantages:

- in the vicinity of nodes, the contours are not circular towards the nodes as their
origins;

- on edges, as borders between neighboring blocks, the values of τ0 may not
coincide when σn ≠ const.

These drawbacks are eliminated in the following improved formula:

  4                                                                                                                 4
τ0 = (∑a0i c0i / (0.3444 + 0.5697 a0i c0i / ai 

1.1))-1
 ,   c0i = σi ρ0i

-1.05 / ∑ σi ρ0i
-1.05 .  (17)

i=1                                                                                                                   i=1

Due to introduction of c0i , values of τ0 for neighboring blocks coincide on edges bordering
them. The elements a0i , ai are common for (15) and (17). By using the values 1.05 and 1.1 of
powers, correspondingly, for c0i and ai, the circular shape of τ0 was obtained in the vicinity of
nodes.

In Fig.3b), the surface τ0 of (17) is shown on the quarter of the normalized elementary
grid block if σ = 1. In Fig. 3c), the graphs of τ0 are the slices along the diagonal and the edge
of the normalized block for the surface τ0.

However, the formula (12) cannot give correct value of s0 if other nearby located flow
sources are present. To account for this situation, the full surface s0j of the local depression
cone caused by β0 is necessary. This task is solved in the next section devoted to computing
heads at monitoring wells.
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a) Contours of τ0 if (15) is used

b) Improved contours of τ0 if (17) is used

c) Graphs of τ0 slices along the diagonal (1) and the edge (2) for the block of Fig.3b)

Fig. 3. The surface of τ0 on the quarter of the normalized grid block 1×1; σ==1.0
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4.    COMPUTING OF HEADS AT MONITORING WELLS

The task of computing the head φ0 at the monitoring well of Fig.1 is more universal than
the one devoted to restoring of the local maximum s0 at the production well (formulas (12),
(14). It is assumed that the following expression should be used:

 8
φ0 = ∑ φn c0n + s0j ,             s0j = τ0j βj (18)

n=5

where τ0j is the transfer resistance of the source βj towards the monitoring point 0. If the
distance ρ0j → 0 then τ0j → τ0 and (18) → (12).

The value of τ0j must be zero at any node. The surface of τ0j must be flat on the level τj
(given by (17)) within a circle with the centre βj  and the radius ρ = 0.1972. Such a surface
may be approximated by the modified IDM, as follows:

  P
τ0j = τj ρ0j

-3.0 / (ρ0j
-3.0 + ∑ ρ0p

-1.5) ,  ρ0p ≤ 2.0,       ρ0j ≤ 2.0 (19)
   p=1

where ρ0j and ρ0p are the normalized distances between the monitoring point 0 and the source
βj  and the nearby nodes p = 1, 2,….P correspondingly; these distances should not exceed 2.0.
The expression (19) is empiric. It was calibrated for the elementary block by considering the
two characteristic source positions (σn =1.0): 1) the center, 2) the middle of an edge. The
results for the centre are shown in Fig.4 and Fig5. In Fig.4a), the contours of τ0j are exposed.
The top ρ0j ≤ 0.1972 of the surface τ0j is not ideally flat on τ0j = 0.2032 and this fact causes
errors. In (19), the powers -3.0 and -1.5 are chosen to minimize the error ∆0j , along the
diagonal of the normalized block 1 × 1 (Fig.5b):

∆0j = (ln(1/ρ0j √2)) / 2 π - τ0j ,    if    1/√2≥ ρ0j ≥ 0.1972,
∆0j = 0.2032 - τ0j ,                   if    0.1972 > ρ0j.> 0. (20)

where the analytic standard of (20) is represented by (13) if 1/√2≥ ρ0j ≥ 0.1972, R = 1/√2.
It follows from Fig.5b) that the graph of ∆0j has two maximal values 0.014 and - 0.012

when ρ0j = 0.2 and 0.35, respectively. Therefore, the relative error 100 ∆0j /0.2032 given by
(20) does not exceed 7%.

If ρ0j < 0.1972 ,  the following analytic correction is necessary:

(τ0j)w = τ0j + (τ0j)0.2h ,    (τ0j)0.2h = (ln(0.1972/ρ0j)) / 2 π σj . (21)

There (τ0j)0.2h represents the analytic complement provided by (13) if R = 0.1972h . In
Fig.4b), contours of (τ0j)0.2h are shown if the minimal ρ0j = 0.25 × 0.1972. The contours of the
summary surface (τ0j)w are represented by Fig.4c). Due to the error ∆0j caused by the slantwise
top of τ0j , the junction of the surfaces τ0j and (τ0j)0.2h is not smooth.
Set in Fig.6, the results are presented when βj is set at the middle of the edge. Contours of τ0j
are shown in Fig.6a). For the source βj , τ0j = τj = 0.124. The error ∆0j of τ0j is evaluated on the
edge where βj is positioned:

∆0j = 0.837 (ln(0.5/ρ0j)) / 2 π - τ0j ,    if    0.5≥ ρ0j ≥ 0.1972,
∆0j = 0.124 - τ0j ,                   if    0.1972 > ρ0j > 0. (22)

It follows from the graph of ∆0j provided by (22) that its maximum is ∆0j = 0.0145 when
ρ0j ~ 0.2 (Fig.6c). It is caused by the slantwise top of the surface τ0j if ρ0j < 0.2. This
maximum is practically the same as for the graph of Fig.5b).
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a) Contours of τ0j

b) Contours of (τ0j)0.2h

c) Contours of τ0j+(τ0j)0.2h

Fig. 4. The source at the center of the normalized block. Contours of τ0j on the quarter of the
region 3×3; σ==1.0
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a) Graphs of τ0j for slices along the diagonal (1) and parallel to the edge (2)

b) Graphs of  ∆0j along the diagonal if 1/√2 ≥ ρ ≥ 0

Fig. 5. Source at the center of the elementary block. Graphs of  τ0j  and ∆0j  for slices
through the source; σ===1.0

If the surface τ0j of (19) is used as a tool for computing of s0j at the monitoring well 0 then
it is possible to account for the influence of various sources βj , j = 1, 2,…J. They are located
within a circle of the radius ρ0max = 2.0. With the centre 0 where superposition of s0j is applied
and the final formula is generalization of (18):

 8      J
φ0 = ∑ φn c0n +  ∑ s0j ,             s0j = τ0j βj . (23)

n=5         j=1

It is supposed that the nearest source is β1, j = 1, ρ01 = min. If ρ01 < 0.1972 then the
analytic complement of (21) should be used for obtaining of s01 = (τ01)w β1 . When ρ01 → ρw1,
then s01 → s1 = τ1w β1 of (14), as the maximum of the local depression caused by β1.

If compared with the original version of back interpolation, the expression (23) is more
universal. Formulation of its main components τj and τ0j have been improved considerably.
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a) Contours of τ0j on the quarter of the region 3×3

b) Graphs of τ0j  for slices through the source along the edge (1) and

c)  Graphs of ∆0j  along the edge if  0.5 ≥ ρ ≥ 0

Fig. 6. The source at the middle of the edge of the normalized block; σ==1.0
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5    CONCLUSIONS

1. Methods for forth and back interpolation have been developed for non-regularly located
production and monitoring wells.

2. The methods improve accuracy of hydrological models, especially, if grid plane steps are
large.

3. The relative error of back interpolation does not exceed (5-10%)
4. The improved interpolation methods have been implemented practically.
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Spalviņš A., Šlangens J., Lāce I. Interpolācija neregulāri izvietotiem urbumiem hidrogeoloģiskajos
modeļos.
Darba un novērošanas urbumu novietojums nesakrīt ar hidroģeoloģiskā (HM) mezgliem un šos novietojumus
var uzskatīt par neregulāriem punktiem, kurus jāpiesaista HM ar interpolācijas palīdzību. Darbs ir veltīts šāda
veida interpolācijai, kura uzlabo HM precizitāti. Tiek aprakstīta jauna metožu attīstība un rezultāti, kuri ir īpaši
nozīmīgi reģionālajiem HM, jo to aproksimācijas režģu solis ir liels.

Spalvins A., Slangens J., Lace I. Interpolation for non-regularly located wells of hydrogeological models.
Locations of production and monitoring wells do not coincide with nodes of hydrogeological model and these
locations may be considered as non – regular points that should be attached to HM by interpolation. The
paper is devoted to this type of interpolation that improves accuracy of HM. New development and results are
reported that are especially important for regional HM where approximation grids are coarse.

Спалвиньш А., Шланген Я., Лаце И. Интерполяция для нерегулярно расположенных скважин в
гидрогеологических моделях.
Расположение рабочих и наблюдательных скважин не совпадает с узлами гидрогеологических моделей
(ГМ). Эти скважины можно считать нерегулярными точками, которые следует включить в ГМ путем
интерполяции. Работа посвящена такому виду интерполяции, которая повышает точность ГМ.
Излагается новое развитие методов и результаты, которые особенно важны для региональных ГМ
имеющих грубые сетки аппроксимации.


