Hydrogeological model of Latvia LAMO

Dr.sc.ing. Aivars Spalvins

Riga Technical University, Latvia

Aivars.Spalvins@rtu.lv

http://www.emc.rtu.lv

Workshop 17.02.2017 on possible application of LAMO data for the Plavinu HPS area

Location of LAMO

In 2010 – 2012, the hydrogeological model (HM) of Latvia (LAMO) has been developed by scientists of Riga Technical University (RTU). LAMO generalizes geological and hydrogeological information accumulated by the Latvian Environment, Geology and Meteorology Centre.

The commercial program Groundwater Vistas-6 (GV) is used for running LAMO. The GV system contains wordly used programs MODFLOW (supports HM), MODPATH (particle tracking), MTeD (mass transport modelling)..

Versions of LAMO

In 2013 – 2015, LAMO was considerably upgraded.

The work was supported by the

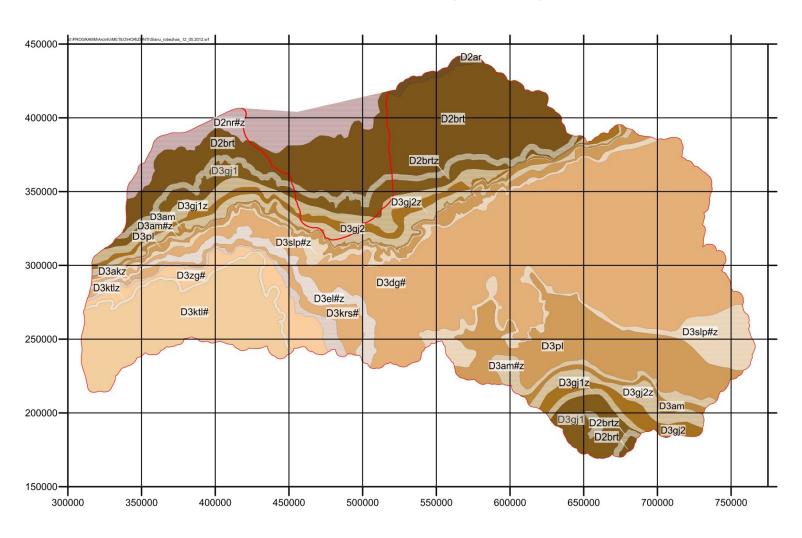
National Research Program «EVIDEnT».

Name of	Year of	Approximation grid			Rivers in model			Lakes
version	dispose	Plane step	Number	Number	Number	Valleys	Flow	Number
		[meter]	of grid	of cells		incised	data	
			planes	$[\times 10^{6}]$			used	
LAMO1	2012	500	25	14.25	199	no	no	67
LAMO2	2013	500	27	15.43	199	yes	no	67
LAMO3	2014	500	27	15.43	469	yes	no	127
LAMO4	2015	250	27	61.56	469	yes	yes	127

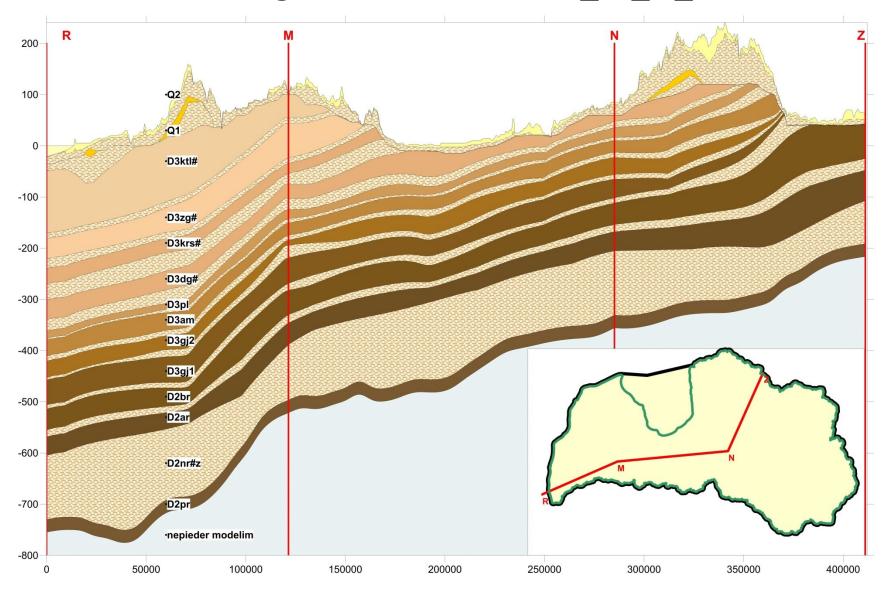
Vertical schematization of LAMO4

By applying 3D-finite difference approximation, the xyz-grid of HM is built using $(h \times h \times m)$ sized bocks (h is block plane size, m is the variable thickness of a geological layer). The model constitutes a rectangular *p*—tiered *xy*—layer system where p is the number of geological layers. For LAMO, p=27, h=250metres. The 3D body of LAMO is approximated by the xyz-grid of size $1901 \times 1201 \times 27$.

No of		Name of	HM layer	Area,		$k_{ m mean}$
HM	*	layer	code	[thous.	m_{mean} ,	meter
layer		lay Ci	code	km ²]	[meter]	/day]
1		Relief	relh	71.29	0.02	10.0
2		Aeration	aer	71.29	0.02	3.1×10 ⁻⁶
~		zone	acı	/1.2/	0.02	5.1.10
3		Unconfined	Q2	71.29	5.77	11.2
		Quaternary	~ -	, 1.2	5.77	11.2
4		Upper	gQ2z	71.29	22.20	1.4×10-3
"		moraine	5Q22	11.27	22.20	1.4~10
5		Confined	Q1#	7.4	6.13	7.0
		Quaternary	× 111	/··	0.15	,
6		Lower	gQ1#z	9.7	9.3	2.8×10 ⁻⁴
"		moraine	5 V 1 11 2	J.,	7.5	2.0*10
7			D3ktl#	5.32	61.46	4.2
8			D3ktlz	5.79	10.52	2.8×10 ⁻⁴
9		Zagares	D3zg#	7.43	42.65	7.0
10		Akmenes	D3akz	7.95	11.05	2.8×10-5
11		Kursas	D3krs#	9.34	22.34	6.3
12		Elejas	D3el#z	9.24	27.58	2.8×10-5
13			D3dg#	32.14	30.37	9.4
14		_	D3slp#z	35.78	12.67	8.4×10-4
15		Plavinu	D3pl	43.80	22.76	8.6
16		Amatas	D3am#z	45.14	8.97	1.4×10-4
17		Amatas	D3am	46.21	21.91	6.4
18		Upper Gauja	D3gj2z	48.80	11.62	2.8×10-4
19		Upper Gauja	D3gj2	50.92	26.34	6.2
20		Lower Gauja	D3gj1z	53.11	13.17	2.8×10 ⁻⁴
21		Lower Gauja	D3gj1	56.13	31.55	5.4
22		Burtnieku	D2brtz	58.09	15.41	5.6×10-4
23		Burtnieku	D2brt	68.74	45.02	4.2
24		Arikula	D2arz	68.74	15.02	4.2×10 ⁻⁴
25		Arikula	D2ar	68.74	40.03	3.2
26		Narva	D2nr#z	71.29	116.67	2.8×10 ⁻⁵
27		Pernava	D2pr	71.29	25.00	10.0

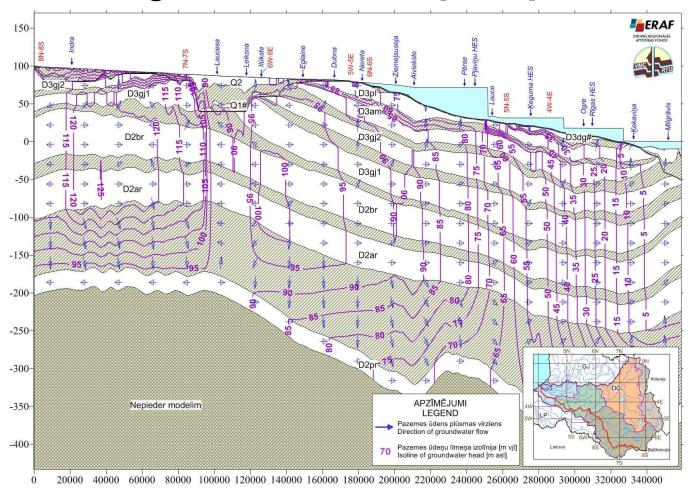


 m_{mean} and k_{mean} – the mean thickness and permeability

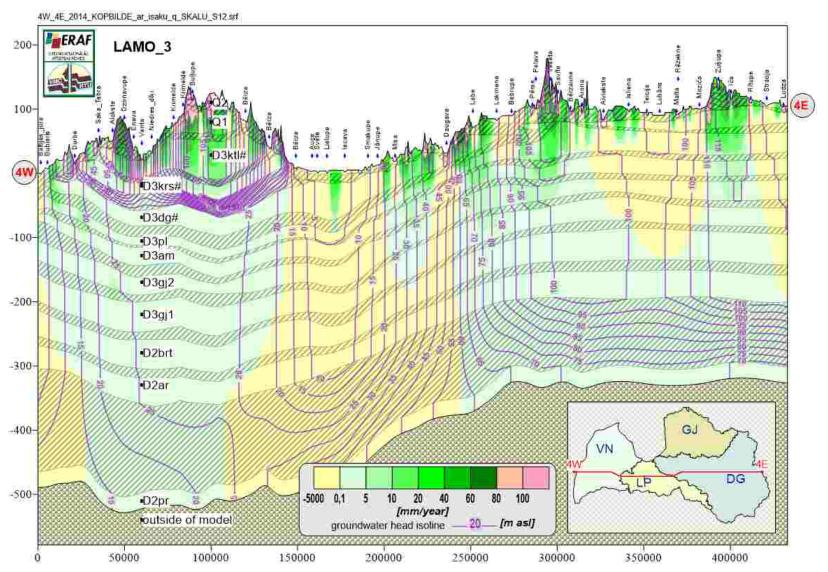

Geological environment of Latvia is very complex, because layers outcrop on subquaternaru surface and are discontinous.

This feature is explained on the slides for boundaries of primary strata and for the geological cross section R_M_N_Z.

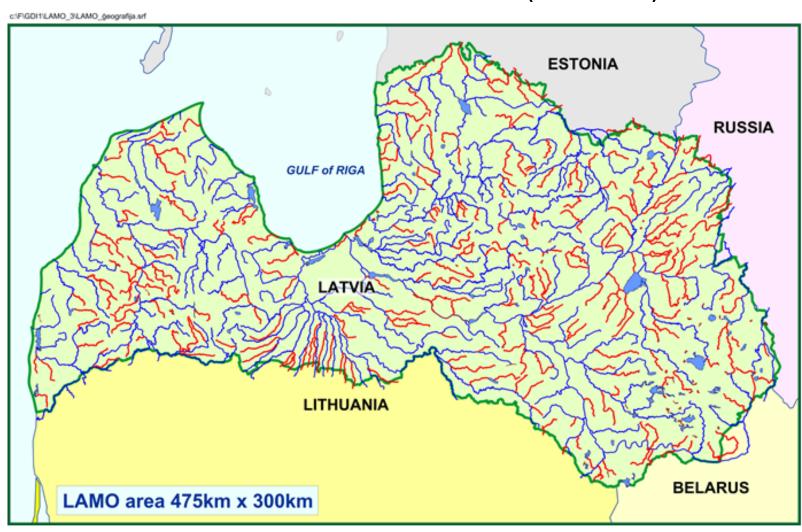
Boundaries of primary geological strata



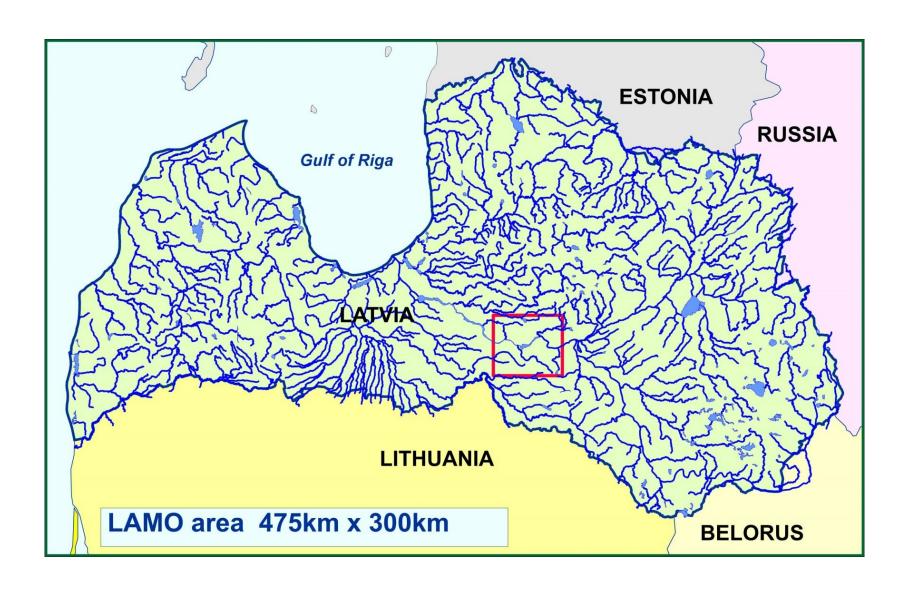
Geological cross section R_M_N_Z


- Geological cross sections can simultaneously carry data on stratigraphy and on distributions of groundwater head and infiltration flow.
- The section along Daugava river crosses the Plavinu HPS area.
- The section 2W_2E touches the northern side of the area

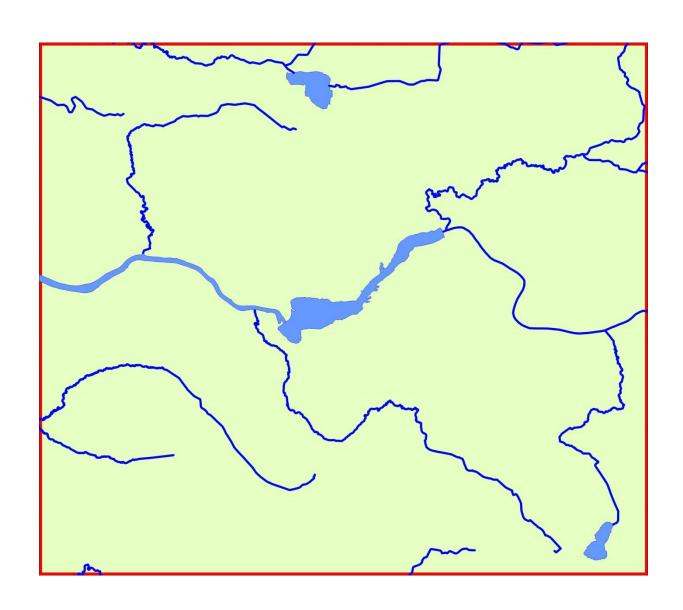
Cross section along Daugava river stratigraphy of layers and isolines of groundwater head [m asl] are shown


Cross section 2W-2E

Infiltration flow in colour and head distribution isolines



In 2014, number of rivers and lakes was increased


Rivers and lakes of LAMO2 (blue color) and the new ones of LAMO3 (red color)

Lakes and rivers of LAMO4

Rivers and lakes within Plavinas HPS area

In 2015, the following updates resulted in LAMO4:

- The plane approximation step of HM was reduced from 500 metre to 250 metre.
- To improve transmissivity data of HM primary aquifers, information provided by pumping tests for wells was used.
- The river base flow of HM has been calibrated by using data provided by measurements of river streams

The current LAMO4 version provides the following digital data:

- stratigraphy of geological layers and of their permeability distributions;
- maps of groundwater head and flow distributions;
- information on interaction between groundwater bodies and surface water sources (sea, lakes, rivers, precipitation).

The model serves as the base for creating more detailed local HM.

The model is being applied for investigation of the nature processes for groundwater system of Latvia.

The text of presentation is available on http://www.emc.rtu.lv/VPP/LAMO-Plavinas.pdf

The more detailed current information on LAMO4 is available on

http://www.emc.rtu.lv/issues/2016/Spalvins_zin_darbiba.pdf

The LAMO4 development was supported by the National Research Program «EVIDEnT».

Thank you for attention